THE CHEN-RUBIN CONJECTURE IN A CONTINUOUS SETTING*

CHRISTIAN BERG ${ }^{\dagger}$ AND HENRIK L. PEDERSEN ${ }^{\ddagger}$

Abstract

We study the median $m(x)$ in the gamma distribution with parameter x and show that $0<m^{\prime}(x)<1$ for all $x>0$. This proves a generalization of a conjecture of Chen and Rubin from 1986: The sequence $m(n)-n$ decreases for $n \geq 1$. We also describe the asymptotic behaviour of m and m^{\prime} at zero and at infinity.

Key words. median, gamma function, gamma distribution
AMS subject classifications. primary 60E05; secondary 41A60, 33B15

1. Introduction. The gamma distribution with (positive) parameter x has density with respect to Lebesgue measure on $(0, \infty)$ given by $e^{-t} t^{x-1} / \Gamma(x)$. The median $m(x)$ of this distribution is defined implicitly as

$$
\int_{0}^{m(x)} \frac{e^{-t} t^{x-1}}{\Gamma(x)} d t=\frac{1}{2}
$$

or

$$
\begin{equation*}
\int_{0}^{m(x)} e^{-t} t^{x-1} d t=\frac{1}{2} \int_{0}^{\infty} e^{-t} t^{x-1} d t \tag{1}
\end{equation*}
$$

This is of course equivalent to

$$
\begin{equation*}
\int_{m(x)}^{\infty} e^{-t} t^{x-1} d t=\frac{1}{2} \int_{0}^{\infty} e^{-t} t^{x-1} d t \tag{2}
\end{equation*}
$$

We show that m is continuous and increasing. This is a consequence of a result about general convolution semigroups of probabilities on the positive half-line, that is given in Section 2. There we also show that m is real analytic and that m satisfies a certain differential equation.

We shall mainly study m through the function

$$
\begin{equation*}
\varphi(x) \equiv \log \frac{x}{m(x)}, \quad x>0 \tag{3}
\end{equation*}
$$

This function appears if we make the substitution $u=\log (x / t)$ in the relation (2):

$$
\begin{equation*}
\int_{-\infty}^{\varphi(x)} e^{-x\left(e^{-u}+u\right)} d u=\frac{1}{2} \int_{-\infty}^{\infty} e^{-x\left(e^{-u}+u\right)} d u \tag{4}
\end{equation*}
$$

Chen and Rubin (see [7]) studied the median of the gamma distribution and proved that $x-1 / 3<m(x)<x$ for $x>0$. The relation (4) was also used in [7] to

[^0]
[^0]: *Received October 29, 2004; accepted for publication August 24, 2006.
 ${ }^{\dagger}$ Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark (berg@math.ku.dk).
 ${ }^{\ddagger}$ Department of Natural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark (henrikp@dina.kvl.dk). Research supported by the Carlsberg Foundation.

