AN INEQUALITY OF HADAMARD TYPE FOR PERMANENTS*

ERIC CARLEN[†], ELLIOTT H. LIEB[‡], AND MICHAEL LOSS[†]

Abstract. Let F be an $N \times N$ complex matrix whose jth column is the vector \vec{f}_i in \mathbb{C}^N . Let $|\vec{f}_i|^2$ denote the sum of the absolute squares of the entries of $\vec{f_j}$. Hadamard's inequality for determinants states that $|\det(F)| \leq \prod_{j=1}^{N} |\vec{f_j}|$. Here we prove a sharp upper bound on the permanent of F, which is $|\operatorname{perm}(F)| \leq \frac{N!}{N^{N/2}} \prod_{i=1}^{N} |\vec{f_j}|$, and we determine all of the cases of equality.

We also discuss the case in which $|\vec{f_j}|$ is replaced by the ℓ_p norm of the vector \vec{f} considered as a function on $\{1, 2, ..., N\}$. We note a simple sharp inequality for p = 1, and obtain bounds for intermediate p by interpolation.

Key words. Permanent, Hadamard inequality, heat kernel

AMS subject classifications. 15A45, 49M20

1. Introduction. Let F be an $N \times N$ complex matrix whose *j*th column is the vector $\vec{f_j}$ in \mathbb{C}^N . Let $|\vec{f_j}|^2$ denote the sum of the absolute squares of the entries of $\vec{f_j}$. Hadamard's inequality for determinants [4] states that $|\det(F)| \leq \prod_{j=1}^{N} |\vec{f_j}|$. Here we prove a sharp upper bound on the permanent of F:

THEOREM 1.1. For any vectors $\vec{f_1}, \ldots, \vec{f_N}$ in \mathbb{C}^N we have the inequality

(1.1)
$$|\operatorname{perm}(F)| \le \frac{N!}{N^{N/2}} \prod_{j=1}^{N} |\vec{f_j}| .$$

For N > 2, there is equality in (1.1) if and only if at least one of the vectors $\vec{f_j}$ is zero, or else F is a rank one matrix and, moreover, each of the vectors \vec{f}_{i} is a constant modulus vector; i.e., its entries all have the same absolute value.

The conditions for equality can be reformulated as follows: There is equality in (1.1) if and only if one or more of the vectors f_j is zero, or else there are numbers r_j , $\xi_j, \zeta_j, j = 1, \dots, N$, with each $r_j > 0$ and each ξ_j and ζ_j lying on the unit circle in the complex plane, so that

$$F_{j,k} = \xi_j \zeta_k r_k$$

for each j, k.

We shall give two proofs of this inequality. The first turns on recognizing (1.1) as a close relative of the Brascamp-Lieb type inequality that we recently proved [2] for integrals of products of functions on the sphere \mathbb{S}^{N-1} . To explain this way of viewing (1.1), we first introduce some notation and terminology.

^{*}Received August 2, 2005; accepted for publication November 25, 2005.

[†]School of Mathematics, Georgia Tech, Atlanta, GA 30332, USA (carlen@math.gatech.edu; loss@math.gatech.edu). Work partially supported by U.S. National Science Foundation grant DMS 03-00349.

[‡]Departments of Mathematics and Physics, Jadwin Hall, Princeton University, P. O. Box 708, Princeton, NJ 08544, USA (lieb@math.princeton.edu). Work partially supported by U.S. National Science Foundation grant PHY 01-39984.

^{© 2006} by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes. 1