AN OPTIMAL TRANSPORTATION METRIC FOR SOLUTIONS OF THE CAMASSA-HOLM EQUATION*

ALBERTO BRESSAN ${ }^{\dagger}$ AND MASSIMO FONTE ${ }^{\ddagger}$

Dedicated to Prof. Joel Smoller in the occasion of his 70-th birthday

Abstract

In this paper we construct a global, continuous flow of solutions to the Camassa-Holm equation on the entire space H^{1}. Our solutions are conservative, in the sense that the total energy $\int\left(u^{2}+u_{x}^{2}\right) d x$ remains a.e. constant in time. Our new approach is based on a distance functional $J(u, v)$, defined in terms of an optimal transportation problem, which satisfies $\frac{d}{d t} J(u(t), v(t)) \leq$ $\kappa \cdot J(u(t), v(t))$ for every couple of solutions. Using this new distance functional, we can construct arbitrary solutions as the uniform limit of multi-peakon solutions, and prove a general uniqueness result.

Key words. Camassa-Holm equation, optimal transportation metric, conservative solution
AMS subject classifications. 35G25, 35Q51, 49J20

1. Introduction. The Camassa-Holm equation can be written as a scalar conservation law with an additional integro-differential term:

$$
\begin{equation*}
u_{t}+\left(u^{2} / 2\right)_{x}+P_{x}=0 \tag{1.1}
\end{equation*}
$$

where P is defined as a convolution:

$$
\begin{equation*}
P \doteq \frac{1}{2} e^{-|x|} *\left(u^{2}+\frac{u_{x}^{2}}{2}\right) . \tag{1.2}
\end{equation*}
$$

For the physical motivations of this equation we refer to $[\mathrm{CH}]$, [CM1], [CM2], [J]. Earlier results on the existence and uniqueness of solutions can be found in [XZ1], [XZ2]. One can regard (1.1) as an evolution equation on a space of absolutely continuous functions with derivatives $u_{x} \in \mathbf{L}^{2}$. In the smooth case, differentiating (1.1) w.r.t. x one obtains

$$
\begin{equation*}
u_{x t}+u u_{x x}+u_{x}^{2}-\left(u^{2}+\frac{u_{x}^{2}}{2}\right)+P=0 . \tag{1.3}
\end{equation*}
$$

Multiplying (1.1) by u and (1.3) by u_{x} we obtain the two conservation laws with source term

$$
\begin{align*}
\left(\frac{u^{2}}{2}\right)_{t}+\left(\frac{u^{3}}{3}+u P\right)_{x} & =u_{x} P \tag{1.4}\\
\left(\frac{u_{x}^{2}}{2}\right)_{t}+\left(\frac{u u_{x}^{2}}{2}-\frac{u^{3}}{3}\right)_{x} & =-u_{x} P . \tag{1.5}
\end{align*}
$$

As a consequence, for regular solutions the total energy

$$
\begin{equation*}
E(t) \doteq \int\left[u^{2}(t, x)+u_{x}^{2}(t, x)\right] d x \tag{1.6}
\end{equation*}
$$

[^0]
[^0]: *Received June 7, 2005; accepted for publication November 5, 2005.
 ${ }^{\dagger}$ Department of Mathematics, Penn State University, University Park, Pa. 16802 USA (bressan @math.psu.edu).
 $\ddagger_{\text {S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy (fonte@sissa.it). }}^{\text {. }}$

