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MONOTONE MAPS OF Rn ARE QUASICONFORMAL∗
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For Neil Trudinger

Abstract. We give a new and completely elementary proof showing that a δ–monotone mapping
of Rn, n ≥ 2 is K–quasiconformal with linear distortion
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This sharpens a result due to L. Kovalev.
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1. Introduction. In [?] L.V. Kovalev proved the interesting fact that a δ–
monotone mapping of Rn is K–quasiconformal for some distortion constant K de-
pending only on δ. Here we give a new poof of this result using methods which are
rather more elementary than those employed in [?], going through a compactness ar-
gument which is more or less standard in the theory of quasiconformal mappings. We
are also able to give the precise estimates relating the monotonicity constant δ and
the distortion constant K (these precise estimates were already given in two dimen-
sions in our earlier work [?].) We remark that the proof given here works without
modification for monotone mappings of Hilbert spaces.

Let us recall the relevant definitions. A function h : Ω ⊂ Rn → Rn is called
δ–monotone, 0 < δ ≤ 1 if for every z, w ∈ Ω

〈h(z)− h(w), z − w〉 ≥ δ|h(z)− h(w)||z − w| (1)

There is no supposition of continuity here. It is obvious from the definition at (1) that
the family of δ–monotone maps is invariant under rescaling and translation. Of course
〈h(z)− h(w), z−w〉 = |h(z)− h(w)||z−w| cos(α) where α is the angle between these
vectors. Thus δ–monotone maps are prevented from rotating the vector formed from a
pair of points more than an angle | arccos(δ)| < π/2. Monotone mappings have found
wide application in partial differential equations for decades, particularly those second
order PDEs of divergence type, because of the well known Minty-Browder theory
[?, ?]. Roughly the monotonicity condition is used to bound a nonlinear operator
away from a curl. See the monograph [?] for some of this theory and connections
with quasiconformal mappings and second order nonlinear divergence equations in
the plane. This brings us to our next definition. An orientation preserving injection
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