WELL-POSEDNESS OF THE IDEAL MHD SYSTEM IN CRITICAL BESOV SPACES*

CHANGXING MIAO † and BAOQUAN YUAN ‡

Abstract. In this paper we study the ideal incompressible magneto-hydrodynamics system, and prove the local existence and uniqueness of solutions in critical Besov spaces $B_{p,1}^{1+n/p}$ for $1 \le p \le \infty$.

Key words. Magneto-hydrodynamics system, critical Besov space, existence and uniqueness

AMS subject classifications. 76W05, 74H20, 74H25

1. Introduction. We are concerned with the following ideal magnetohydrodynamics (MHD) system for the homogeneous incompressible fluid flows and magnetic fields

$$u_t + (u \cdot \nabla)u - (b \cdot \nabla)b - \nabla\pi = 0 \tag{1.1}$$

$$b_t + (u \cdot \nabla)b - (b \cdot \nabla)u = 0 \tag{1.2}$$

$$\operatorname{div} u = 0, \quad \operatorname{div} b = 0 \tag{1.3}$$

with initial data

$$u(x,0) = u_0(x), \tag{1.4}$$

$$b(x,0) = b_0(x). (1.5)$$

Here $u(x,t) = (u_1(x,t), u_2(x,t), \cdots, u_n(x,t))$ is the velocity of the fluid flows, $b(x,t) = (b_1(x,t), b_2(x,t), \cdots, b_n(x,t))$ is the magnetic field, and $\pi(x,t) = p(x,t) + \frac{1}{2}|b(x,t)|^2$ is the total pressure for $x \in \mathbb{R}^n$, $t \ge 0$ and $u_0(x)$ and $b_0(x)$ are the initial velocity and initial magnetic field satisfying div $u_0=0$, div $b_0=0$, respectively. For simplicity, we have set the Reynolds number, magnetic Reynolds number and the corresponding coefficients to be constant 1 by scaling transformation.

In the case of Euler equations, the existence and uniqueness of solutions to Euler equations have been studied by many authors (see J.-Y. Chemin [3] and reference there). Recently, Vishik [11], H.C. Park and Y.J. Park [6] obtained the existence and uniqueness of solutions of the incompressible Euler equations in critical Besov spaces. Vishik considered Euler equations in space dimension 2 and proved the global well-posedness in critical Besov space $B_{p,1}^{1+2/p}$, 1 by transport equationand the invariance of vorticity. For the ideal magneto-hydrodynamics system, themethod Vishik used is not valid, and it is more complicated because of the coupleeffect between velocity <math>u(x,t) and magneto fields b(x,t). The existence of the classical solution for MHD system was shown by Kozono [4] in the bounded domain, See also [9]. In BMO^{-1} and bmo^{-1} spaces, Miao, Yuan and Zhang proved the global existence and uniqueness of solution to the incompressible MHD system for small initial data [5]. In the case of Sobolev spaces $W^{k,p}$, the existence and uniqueness results for

^{*}Received March 13, 2005; accepted for publication August 24, 2006.

[†]Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P.R. China (changxing@mail.iapcm.ac.cn).

[‡]College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454000, P.R. China (bqyuan@hpu.edu.cn); Institute of Applied Mathematics, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, P.R. China.