SYMMETRY OF A SYMPLECTIC TORIC MANIFOLD

Mikiya Masuda

The action of a torus group T on a symplectic toric manifold (M, ω) often extends to an effective action of a (non-abelian) compact Lie group G. We may think of T and G as compact Lie subgroups of the $\operatorname{symplectomorphism} \operatorname{group} \operatorname{Symp}(M, \omega)$ of (M, ω). On the other hand, (M, ω) is determined by the associated moment polytope P by the result of Delzant [4]. Therefore, the group G should be estimated in terms of P or we may say that a maximal compact Lie subgroup of $\operatorname{Symp}(M, \omega)$ containing the torus T should be described in terms of P. In this paper, we introduce a root system $R(P)$ associated to P and prove that any irreducible subsystem of $R(P)$ is of type A and the root system $\Delta(G)$ of the group G is a subsystem of $R(P)$ (so that $R(P)$ gives an upper bound for the identity component of G and any irreducible factor of $\Delta(G)$ is of type $A)$. We also introduce a homomorphism \mathcal{D} from the normalizer $N_{G}(T)$ of T in G to an automorphism group $\operatorname{Aut}(P)$ of P, which detects the connected components of G. Finally, we find a maximal compact Lie subgroup $G_{\max }$ of $\operatorname{Symp}(M, \omega)$ containing the torus T such that $\Delta\left(G_{\max }\right)=R(P)$ and \mathcal{D} is onto.

1. Introduction

A symplectic toric manifold is a compact connected symplectic manifold (M, ω) with an effective Hamiltonian action of a torus group T of half the dimension of the manifold M. Delzant [4] proves that M is equivariantly diffeomorphic to a smooth projective toric variety with the restricted T-action. Moreover he classifies symplectic toric manifolds by showing that the correspondence from symplectic toric manifolds modulo equivalence to their moment polytopes is one-to-one. Therefore, all geometrical information on (M, ω) is encoded in the moment polytope P associated with (M, ω).

The T-action on (M, ω) often extends to an effective action of a (nonabelian) compact Lie group G. We may think of T and G as compact Lie subgroups of the symplectomorphism $\operatorname{group} \operatorname{Symp}(M, \omega)$ of (M, ω). Since

