INTEGRALS OF EQUIVARIANT FORMS OVER NON-COMPACT SYMPLECTIC MANIFOLDS

Matvei Libine

This article is a result of the AIM workshop on Moment Maps and Surjectivity in Various Geometries (August 9-13, 2004) organized by T. Holm, E. Lerman and S. Tolman. At that workshop I was introduced to the work of Hausel and Proudfoot on hyperkähler quotients [HP]. One interesting feature of their article is that they consider integrals of equivariant forms over non-compact symplectic manifolds which do not converge, so they formally define these integrals as sums over the zeroes of vector fields, as in the Berline-Vergne localization formula. In this article we introduce a geometric-analytic regularization technique which makes such integrals converge and utilizes the symplectic structure of the manifold. We also prove that the Berline-Vergne localization formula holds for these integrals as well. The key step here is to redefine the collection of integrals $\int_{M} \alpha(X), X \in \mathfrak{g}$, as a distribution on the Lie algebra \mathfrak{g}. We expect our regularization technique to generalize to non-compact group actions extending the results of $[\mathbf{L} 1, \mathbf{L} 2]$.

1. Introduction

This article is a result of the AIM workshop on Moment Maps and Surjectivity in Various Geometries (August 9-13, 2004) organized by T. Holm, E. Lerman and S. Tolman. At that workshop I was introduced to the work of Hausel and Proudfoot on hyperkähler quotients [HP]. One interesting feature of their article is that they consider integrals of equivariant forms over non-compact symplectic manifolds which do not converge, so they formally define these integrals as sums over the zeroes of vector fields, as in the Berline-Vergne localization formula.

While the definition is perfectly valid, it does not feel satisfactory. The Berline-Vergne localization formula relates a global object (integral of a cohomology class) with a local object (certain quotients defined at zeroes of a vector field). From this point of view, the localization formula is very similar

