COISOTROPIC SUBMANIFOLDS, LEAF-WISE FIXED POINTS, AND PRESYMPLECTIC EMBEDDINGS

Fabian Ziltener

Let (M,ω) be a geometrically bounded symplectic manifold, $N\subseteq M$ a closed, regular (i.e., "fibering") coisotropic submanifold, and $\varphi:M\to M$ a Hamiltonian diffeomorphism. The main result of this article is that the number of leaf-wise fixed points of φ is bounded below by the sum of the \mathbb{Z}_2 -Betti numbers of N, provided that the Hofer distance between φ and the identity is small enough and the pair (N,φ) is non-degenerate. The bound is optimal if there exists a \mathbb{Z}_2 -perfect Morse function on N. A version of the Arnol'd–Givental conjecture for coisotropic submanifolds is also discussed. As an application, I prove a presymplectic non-embedding result.

Contents

1.	Main results	96
	1.1. Leaf-wise fixed points	96
	1.2. Idea of proof of Theorem 1.1	98
	1.3. Discussion of optimality	98
	1.4. Arnol'd–Givental conjecture (AGC) for coisotropic	
	submanifolds	99
	1.5. An application	96
	1.6. Further research	100
	1.7. Related results	100
	1.8. Organization of the article	102
2.	Background	103
	2.1. Notation, manifolds	103
	2.2. Foliations, regularity and linear holonomy	103
	2.3. Presymplectic manifolds and symplectic quotients	10 4