CLASSIFICATION OF MULTIPLICITY FREE HAMILTONIAN ACTIONS OF ALGEBRAIC TORI ON STEIN MANIFOLDS

IVAN LOSEV

A Hamiltonian action of an algebraic torus on a symplectic complex manifold is said to be multiplicity free if a general orbit is a lagrangian submanifold. To any multiplicity free Hamiltonian action of an algebraic torus $T \cong (\mathbb{C}^{\times})^n$ on a Stein manifold X we assign a certain 5-tuple consisting of a Stein manifold Y, an étale map $Y \to \mathfrak{t}^*$, a set of divisors on Y and elements of $H^2(Y,\mathbb{Z})^{\oplus n}$, $H^2(Y,\mathbb{C})$. We show that X is uniquely determined by this invariants. Furthermore, we describe all 5-tuples arising in this way.

Contents

1. Introduction	295
2. Generalities on MF Hamiltonian Stein T-manifolds	298
$egin{aligned} 3. & ext{The sheaf } \mathcal{A}ut \ 4. & ext{Uniqueness} \end{aligned}$	303 305
6. An open problem	308
References	309

1. Introduction

Let X be a smooth manifold with a symplectic form ω and T be a compact torus acting on X by symplectomorphisms. We recall that the action T: Xis called Hamiltonian if there are $n = \dim T$ functions $H_1, \ldots, H_n \in C^{\infty}(X)$ such that

(H1) $\{H_i, H_j\} = 0$, where $\{\cdot, \cdot\}$ denotes the Poisson bracket on X induced by ω .