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We show that the classical Bernstein polynomials BN (f)(x) on the
interval [0, 1] (and their higher dimensional generalizations on the sim-
plex Σm ⊂ R

m) may be expressed in terms of Bergman kernels for
the Fubini–Study metric on CP

m : BN (f)(x) is obtained by applying
the Toeplitz operator f(N−1Dθ) to the Fubini–Study Bergman ker-
nels. The expression generalizes immediately to any toric Kähler variety
and Delzant polytope, and gives a novel definition of Bernstein “poly-
nomials” BhN (f) relative to any toric Kähler variety. They uniformly
approximate any continuous function f on the associated polytope P
with all the properties of classical Bernstein polynomials. Upon integra-
tion over the polytope, one obtains a complete asymptotic expansion
for the Dedekind–Riemann sums 1

Nm

∑
α∈NP f( α

N ) of f ∈ C∞(Rm), of
a type similar to the Euler–MacLaurin formulae.

1. Introduction

Our starting point is the observation that the classical Bernstein polynomials

(1.1) BN (f)(x) =
∑

α∈Nm:|α|≤N

(
N

α

)

xα(1 − ‖x‖)N−|α|f
( α

N

)
,

on the m-simplex Σm ⊂ R
m may be expressed in terms of the Bergman–

Szegö kernels ΠhN
FS

(z, w) for the Fubini–Study metric on CP
m: Let eiθ denote

the standard Tm = (S1)m action on C
m and and let Dθj

denote the lineariza-
tion (or “quantization”) of its infinitesimal generators on H0(CP

m,O(N)).
As will be shown in Section 2 (see also Section 4),

(1.2) BN (f)(x) =
1

ΠhN
FS

(z, z)
f(N−1Dθ)ΠhN

FS
(eiθz, z)|θ=0,z=μ−1

hFS
(x),

where f ∈ C∞
0 (Rm). Here, ΠhN

FS
denotes the Bergman–Szegö kernel on pow-

ers O(N) → CP
m of the invariant hyperplane line bundle, f(N−1Dθ) is
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