THE COBORDISM CLASS OF THE MODULI SPACE OF POLYGONS IN \mathbb{R}^3

Alessia Mandini

For any vector $r = (r_1, \ldots, r_n)$, let M_r denote the moduli space (under rigid motions) of polygons in \mathbb{R}^3 with *n*-sides whose lengths are r_1, \ldots, r_n . We give an explicit characterization of the oriented S^1 -cobordism class of M_r which depends uniquely on the length vector r.

1. Introduction

The study of the geometry of moduli spaces of polygons with fixed side lengths r_1, \ldots, r_n in the Euclidean space has raised, since the 1990s, a remarkable interest in symplectic geometry. These moduli spaces have a very rich structure; they can be described (in two possible ways) as symplectic quotients: see for example [1] where Kapovich and Millson show that these spaces are complex-analytic spaces and they define and study the Hamiltonian flows on M_r obtained by bending polygons along diagonals. Another description of M_r as a symplectic reduction is given by Hausmann and Knutson [2], who also give a useful geometric interpretation of the bending action.

Let $S_r = \prod_{j=1}^n S_{r_j}^2$ be the product of n spheres of radii r_1, \ldots, r_n respectively; S_r is a symplectic manifold and a Hamiltonian SO(3)-space with associated moment map

$$\mu: \mathcal{S}_r \longrightarrow \operatorname{Lie}(\operatorname{SO}(3))^* \simeq \mathbb{R}^3$$

 $\vec{e} = (e_1, \dots, e_n) \longmapsto e_1 + \dots + e_n.$

For a (suitably chosen) length vector $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$ the symplectic quotient $\mathcal{S}_r//\mathrm{SO}(3)$ at the 0-level set is a smooth manifold, and it is defined to be the moduli space M_r [1]. Note that the condition $\mu(\vec{e}) = 0$ is the closing condition for a polygon with edge vectors e_1, \ldots, e_n starting at an

1