JOURNAL OF SYMPLECTIC GEOMETRY Volume 5, Number 2, 221–247, 2007

TEST CONFIGURATIONS FOR K-STABILITY AND GEODESIC RAYS

DUONG H. PHONG AND JACOB STURM

Let X be a compact complex manifold, $L \to X$ an ample line bundle over X, and \mathcal{H} the space of all positively curved metrics on L. We show that a pair (h_0, T) consisting of a point $h_0 \in \mathcal{H}$ and a test configuration $T = (\mathcal{L} \to \mathcal{X} \to \mathbf{C})$, canonically determines a weak geodesic ray $R(h_0, T)$ in \mathcal{H} which emanates from h_0 . Thus a test configuration behaves like a vector field on the space of Kähler potentials \mathcal{H} . We prove that R is non-trivial if the \mathbf{C}^{\times} action on X_0 , the central fiber of \mathcal{X} , is non-trivial. The ray R is obtained as limit of smooth geodesic rays $R_k \subseteq \mathcal{H}_k$, where $\mathcal{H}_k \subseteq \mathcal{H}$ is the subspace of Bergman metrics.

Dedicated to Dusa McDuff

1. Introduction

Let X be a compact complex manifold. According to a basic conjecture of Yau [33], the existence of canonical metrics on X should be equivalent to a stability condition in the sense of geometric invariant theory. A version of this conjecture, due to Tian [31] and Donaldson [14], says that if $L \to X$ is an ample line bundle, then X has a metric of constant scalar curvature in $c_1(L)$ if and only if the pair (X, L) is K-stable, that is, if and only if the Futaki invariant F(T) is negative for each non-trivial test configuration T. In particular, F(T) < 0 for all such T should imply that the K-energy $\nu: \mathcal{H} \to \mathbf{R}$ is bounded below, where \mathcal{H} is the space of all positively curved metrics on L.

Now it is well known that the K-energy is convex along geodesics of \mathcal{H} (Donaldson [12]). Thus, if $h_0 \in \mathcal{H}$ and if $R: (-\infty, 0] \to \mathcal{H}$ is a smooth geodesic ray emanating from h_0 , then the restriction of ν to R is a smooth convex function $\nu_R: (-\infty, 0] \to \mathbf{R}$ and hence $\lim_{t\to -\infty} \dot{\nu}_R = a(R)$ is well defined (here $\dot{\nu}_R$ is the time derivative of the K-energy). In particular, if a(R) < 0, then ν is bounded below on the ray R.