JOURNAL OF SYMPLECTIC GEOMETRY Volume 5, Number 2, 167–219, 2007

THE GROUP OF HAMILTONIAN HOMEOMORPHISMS AND C^0 -SYMPLECTIC TOPOLOGY

Yong-Geun Oh and Stefan Müller

The main purpose of this paper is to carry out some of the foundational study of C^0 -Hamiltonian geometry and C^0 -symplectic topology. We introduce the notion of Hamiltonian topology on the space of Hamiltonian paths and on the group of Hamiltonian diffeomorphisms. We then define the group, denoted by Hameo (M, ω) , consisting of Hamiltonian homeomorphisms such that

 $\operatorname{Ham}(M,\omega) \subsetneq \operatorname{Hameo}(M,\omega) \subset \operatorname{Sympeo}(M,\omega),$

where Sympeo (M, ω) is the group of symplectic homeomorphisms. We prove Hameo (M, ω) is a normal subgroup of Sympeo (M, ω) and contains all the time-one maps of Hamiltonian vector fields of $C^{1,1}$ -functions, and Hameo (M, ω) is path-connected and so contained in the identity component Sympeo $_0(M, \omega)$ of Sympeo (M, ω) .

We also prove that the mass flow of any Hamiltonian homeomorphism vanishes. In the case of a closed orientable surface, this implies that Hameo (M, ω) is strictly smaller than the identity component of the group of area-preserving homeomorphisms when $M \neq S^2$. For $M = S^2$, we conjecture that Hameo (S^2, ω) is still a proper subgroup of Sympeo₀ (S^2, ω) .

Dedicated to Dusa McDuff

1. Introduction

Let (M, ω) be a connected symplectic manifold. Unless explicit mention is made to the contrary, M will be closed. See Section 6 for the necessary changes in the non-compact case or in the case with boundary. Denote by $\operatorname{Symp}(M, \omega)$ the group of symplectic diffeomorphisms i.e., the subgroup of $\operatorname{Diff}(M)$ consisting of diffeomorphisms $\phi : M \to M$ such that $\phi^*\omega = \omega$. We equip $\operatorname{Diff}(M)$ with the C^{∞} -topology. Then $\operatorname{Symp}(M, \omega)$ forms a closed topological subgroup. We call the induced