POSITIVITY OF EQUIVARIANT SCHUBERT CLASSES THROUGH MOMENT MAP DEGENERATION

CATALIN ZARA

For a flag manifold M=G/B with the canonical torus action, the T-equivariant cohomology is generated by equivariant Schubert classes, with one class τ_u for every element u of the Weyl group W, and these classes are determined by their restrictions to the fixed point set $M^T \simeq W$. The main result of this article is a positive formula for computing $\tau_u(v)$ in types A, B, and C. We identify G/B with a generic coadjoint orbit and use a result of Goldin and Tolman to compute $\tau_u(v)$ in terms of the induced moment map. Our positive formula, given as a sum indexed by certain saturated chains, follows from a systematic degeneration of the moment map. In type A our formula is equivalent to a classical positive formula that uses summation over certain subwords, but in type C, the two formulas are different.

Nomenclature

G	connected, complex, semisimple Lie group
B	Borel subgroup of G
M = G/B	flag manifold
$T^{\mathbb{C}}, T$	maximal complex torus in B and its com-
	pact real form
$H_T^*(M) = H_T^*(M; \mathbb{Q})$	rational T -equivariant cohomology of M
$\mathfrak{t},\mathfrak{t}^*$	Lie algebra of T and its dual
$\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$	simple, positive roots corresponding to B
$0 \prec \beta$	the vector $\beta \in \mathfrak{t}^*$ has non-negative coordi-
	nates in \mathcal{B}
ω_1,\ldots,ω_n	fundamental weights corresponding to
	α_1,\ldots,α_n