POSITIVITY OF EQUIVARIANT SCHUBERT CLASSES THROUGH MOMENT MAP DEGENERATION ## CATALIN ZARA For a flag manifold M=G/B with the canonical torus action, the T-equivariant cohomology is generated by equivariant Schubert classes, with one class τ_u for every element u of the Weyl group W, and these classes are determined by their restrictions to the fixed point set $M^T \simeq W$. The main result of this article is a positive formula for computing $\tau_u(v)$ in types A, B, and C. We identify G/B with a generic coadjoint orbit and use a result of Goldin and Tolman to compute $\tau_u(v)$ in terms of the induced moment map. Our positive formula, given as a sum indexed by certain saturated chains, follows from a systematic degeneration of the moment map. In type A our formula is equivalent to a classical positive formula that uses summation over certain subwords, but in type C, the two formulas are different. ## Nomenclature | G | connected, complex, semisimple Lie group | |---|--| | B | Borel subgroup of G | | M = G/B | flag manifold | | $T^{\mathbb{C}}, T$ | maximal complex torus in B and its com- | | | pact real form | | $H_T^*(M) = H_T^*(M; \mathbb{Q})$ | rational T -equivariant cohomology of M | | $\mathfrak{t},\mathfrak{t}^*$ | Lie algebra of T and its dual | | $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ | simple, positive roots corresponding to B | | $0 \prec \beta$ | the vector $\beta \in \mathfrak{t}^*$ has non-negative coordi- | | | nates in \mathcal{B} | | ω_1,\ldots,ω_n | fundamental weights corresponding to | | | α_1,\ldots,α_n |