JOURNAL OF SYMPLECTIC GEOMETRY Volume 4, Number 3, 259–315, 2007

GROUPOIDS, BRANCHED MANIFOLDS AND MULTISECTIONS

DUSA MCDUFF

Cieliebak *et al.* recently formulated a definition of branched submanifold of Euclidean space in connection with their discussion of multivalued sections and the Euler class. This note proposes an intrinsic definition of a weighted branched manifold \underline{Z} that is obtained from the usual definition of oriented orbifold groupoid by relaxing the properness condition and adding a weighting. We show that if \underline{Z} is compact, finite dimensional and oriented, then it carries a fundamental class $[\underline{Z}]$. Adapting a construction of Liu and Tian, we also show that the fundamental class $[\underline{X}]$ of any oriented orbifold \underline{X} may be represented by a map $\underline{Z} \to \underline{X}$, where the branched manifold \underline{Z} is unique up to a natural equivalence relation. This gives further insight into the structure of the virtual moduli cycle in the new polyfold theory recently constructed by Hofer *et al.*

Contents

1. Introduction	260
2. Orbifolds and groupoids	261
2.1. Smooth, stable, étale (sse) groupoids	262
2.2. Orbifolds and atlases	266
2.3. Fundamental cycles and cobordism	271
3. Weighted nonsingular branched groupoids	272
3.1. Basic definitions	272
3.2. Layered coverings	278
3.3. Branched manifolds and resolutions	283
3.4. The fundamental class	286
4. Resolutions	293
4.1. Construction of the resolution	293