Geometry and Symmetry

BOOK REVIEW

Elementary Differential Geometry, by Andrew Pressley, Springer, London 2010, xi+473 pp., ISBN 978-1-84882-890-2.

The book is devoted to the differential geometry of curves and surfaces in the three-dimensional Euclidean space and consists of thirteen chapters.
First Chapter - Curves in the Plane and in Space, is split into five sections. At first two types of curves are discussed - level curves and parameterized curves, as well the relation between them. For a smooth parameterized curve $\gamma:(\alpha, \beta) \rightarrow$ $\mathbb{R}^{n}, n \geqq 2,-\infty \leqq \alpha<\beta \leqq \infty$, the author introduces the notions: the tangent vector $\dot{\gamma}(t)$ at the point $\gamma(t)$, an arc length $s(t)=\int_{t_{0}}^{t}\|\dot{\gamma}(u)\| \mathrm{d} u$ starting at the point $\gamma\left(t_{0}\right)$, the speed $\|\dot{\gamma}(t)\|$ of the point $\gamma(t)$ and reparametrization. The following objects are also defined: a unit-speed, regular, periodic and closed curves. It is proved that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
Chapter two - How Much Does a Curve Curve, is structured into three sections. This chapter contains the following themes of a regular curve: curvature κ (measuring the extent to which a curve which is not contained in a straight line curve), torsion τ (measuring the extent to which a curve in \mathbb{R}^{3} is not contained in a plane curve in $\mathbb{R}^{n}, n \geqq 2$), signed unit, normal n_{s} and signed curvature κ_{s} of a plane curve, total signed curvature $\int_{0}^{l} \kappa_{s} \mathrm{~d} s$ of a closed curve of length l, a turning angle $\varphi(s)$ of a plane curve, Frenet-Serret equations of a curve in \mathbb{R}^{3}. It is proved that: $\kappa_{s}=\mathrm{d} \varphi / \mathrm{d} s$ (i.e., the signed curvature is the rate of which the tangent vector of the curve rotates) and the theorem that the curvature κ and the torsion τ (for a curve in \mathbb{R}^{3}) determine the curve up to a motion in the space.
Chapter three - Global Properties of Curves, is split into three sections. Here are presented (without complete proofs) the following global results for a simple closed curve γ - the Hopf's Umlaufsatz that the total signed curvature of γ is $\pm 2 \pi$, the isoperimetric inequali $A(\gamma) \leqq 1 / 4 \pi l(\gamma)^{2}$, where $A(\gamma)$ is the area contained by γ and $l(\gamma)$ is the length of γ and the Four Vertex Theorem.
Chapter four - Surfaces in Three Dimensions, is structured into five sections. A subset S of \mathbb{R}^{3} is called a surface if for every point $p \in S$ there is an open set U

