Homology, Homotopy and Applications, vol. 8(2), 2006, pp.105–114

THE ETA INVARIANT AND THE "TWISTED" CONNECTIVE K-THEORY OF THE CLASSIFYING SPACE FOR CYCLIC 2-GROUPS

EGIDIO BARRERA-YANEZ

(communicated by Jonathan Rosenberg)

Abstract

Let $\ell = 2^{\nu} \ge 2$. We use the eta invariant to study the "twisted" connective real K-theory groups $ko_m(B\mathbb{Z}_{\ell},\xi_1)$ of the classifying space $B\mathbb{Z}_{\ell}$ for the cyclic group \mathbb{Z}_{ℓ} .

1. Introduction

Atiyah [1] expressed the complex K-theory of the classifying space of \mathbb{Z}_{ℓ} in terms of the complex representation ring of \mathbb{Z}_{ℓ} . Looking for a "geometric" construction of Elliptic homology, Kreck and Stolz [11] gave a geometric characterization of connective real K-theory. Stolz used this characterization to study when a simply connected manifold admits a metric with positive scalar curvature, see [12] for details. Botvinnik and Gilkey [6] and Botvinnik, Gilkey, and Stolz [7] studied when a manifold with non-trivial fundamental group admits a metric with positive scalar curvature. They defined a "twisted" geometric version of connective real K-theory. In this paper we will express the "twisted" connective real K-theory of the classifying space \mathbb{Z}_{ℓ} in terms of the complex representation ring of \mathbb{Z}_{ℓ} . Instead of using topological methods as Atiyah did, we shall use analytical methods; our fundamental tool is the eta invariant.

Let $\mathbb{Z}_{\ell} := \{\lambda \in \mathbb{C} : \lambda^{\ell} = 1\}$ be the cyclic group of order $\ell = 2^{\nu} \ge 2$. Let $\rho_s(\lambda) = \lambda^s$ define an irreducible linear representation of \mathbb{Z}_{ℓ} . The ρ_s parametrize the irreducible representations of \mathbb{Z}_{ℓ} . Let ξ_1 be the underlying real 2 plane bundle of the complex line bundle defined by the representation ρ_1 . Let $D(\xi_1)$, $S(\xi_1)$ be the disk bundle and respectively sphere bundle with respect to some fiber metric on ξ_1 . Let $T(\xi_1) = D(\xi_1)/S(\xi_1)$ be the Thom space associated with ξ_1 . We use the Thom-Pontryagin construction to define the twisted equivariant spin bordism groups and twisted connective real *K*-theory groups by:

$$MSpin_m(B\mathbb{Z}_{\ell},\xi_1) := \widetilde{MSpin}_{m+2}(T(\xi_1))$$
$$ko_m(B\mathbb{Z}_{\ell},\xi_1) := \widetilde{ko}_{m+2}(T(\xi_1)).$$

[†]The author passed away on August 19, 2004.

Received January 12, 2004; published on August 9, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 55N15, 58G12.

Key words and phrases: connective K-theory, eta invariant.

Copyright © 2006, International Press. Permission to copy for private use granted.