ON THE SUM OF TWO MAXIMAL MONOTONE OPERATORS

Ph. Clément and P. Egberts
Faculty of Technical Mathematics and Informatics
Delft University of Technology, Julianalaan 132, 2628 BL Delft, The Netherlands

(Submitted by: G. Da Prato)

1. Introduction and statement of the main results. Let $(\mathcal{H},((\cdot, \cdot)))$ be a real Hilbert space and let $\mathcal{A}_{i}: D\left(\mathcal{A}_{i}\right) \subset \mathcal{H} \rightarrow \mathcal{H}, i=1,2$, be two linear m-accretive (or equivalently maximal monotone) operators. Let $\mathcal{A}_{i, \lambda}$ for $\lambda>0$ denote the Yosida-approximation of $\mathcal{A}_{i}, i=1,2$. It follows from a general result of Da Prato and Grisvard [10] that if the operators $\mathcal{A}_{1, \lambda}$ and $\mathcal{A}_{2, \mu}$ commute for all $\lambda, \mu>0$ (or equivalently for some $\lambda, \mu>0$) that $\overline{\mathcal{A}_{1}+\mathcal{A}_{2}}$, the closure of $\mathcal{A}_{1}+\mathcal{A}_{2}$, is m-accretive. In general $\mathcal{A}_{1}+\mathcal{A}_{2}$ is not closed but, as is well-known, if \mathcal{A}_{1} and \mathcal{A}_{2} satisfies.

$$
\begin{equation*}
\left(\left(\mathcal{A}_{1, \lambda} u, \mathcal{A}_{2, \mu} u\right)\right) \geq 0 \text { for all } \lambda, \mu>0 \text { and } u \in \mathcal{H} \tag{1.1}
\end{equation*}
$$

then, even if $\mathcal{A}_{1, \lambda}$ and $\mathcal{A}_{2, \mu}$ do not commute, $\mathcal{A}_{1}+\mathcal{A}_{2}$ is m-accretive [4]. In particular if $\mathcal{A}_{1, \lambda}$ and $\mathcal{A}_{2, \mu}$ commute and if \mathcal{A}_{1} is selfadjoint then condition (1.1) is satisfied. Indeed, one verifies that

$$
\begin{aligned}
\left(\left(\mathcal{A}_{1, \lambda} u, \mathcal{A}_{2, \mu} u\right)\right) & \left.=\left(\left(\mathcal{A}_{1, \lambda}\right)^{\frac{1}{2}} u,\left(\mathcal{A}_{1, \lambda}\right)^{\frac{1}{2}} \mathcal{A}_{2, \mu} u\right)\right) \\
& \left.=\left(\left(\mathcal{A}_{1, \lambda}\right)^{\frac{1}{2}} u, \mathcal{A}_{2, \mu}\left(\mathcal{A}_{1, \lambda}\right)^{\frac{1}{2}} u\right)\right) \geq 0
\end{aligned}
$$

for $\lambda, \mu>0$ and $u \in \mathcal{H}$ [13].
The aim of this paper is to prove a nonlinear version of this result. First we recall that a linear m-accretive operator \mathcal{A} in \mathcal{H} is selfadjoint if and only if it is the subdifferential of a convex function $\Phi: \mathcal{H} \rightarrow[0, \infty]$ which is lower semicontinuous (l.s.c) satisfying

$$
\Phi(u)= \begin{cases}\frac{1}{2}\left(\left(\mathcal{A}^{\frac{1}{2}} u, \mathcal{A}^{\frac{1}{2}} u\right)\right), & \text { if } u \in D\left(\mathcal{A}^{\frac{1}{2}}\right) \\ +\infty, & \text { otherwise [3]. }\end{cases}
$$

We consider the following situation. Let $(\Omega, \mathcal{M}, \nu)$ be a σ-finite measure space and let $(H,(\cdot, \cdot))$ be a real Hilbert space with norm $|\cdot|=(\cdot, \cdot)^{\frac{1}{2}}$. Set $\mathcal{H}=L^{2}(\Omega, H)$, that is the Hilbert space of H -valued (equivalence classes) Bochner measurable functions $u: \Omega \rightarrow H$ satisfying $\int_{\Omega}|u(\omega)|^{2} d \nu(\omega)<\infty$, with the innerproduct $((u, v))=$ $\int_{\Omega}(u(\omega), v(\omega)) d \nu(\omega)$ for $u, v \in \mathcal{H}$.

Received June 11, 1989.
AMS Subject Classifications: $47 \mathrm{H} 05,47 \mathrm{H} 20$.

