SPHERICAL MAXIMA IN HILBERT SPACE AND SEMILINEAR ELLIPTIC EIGENVALUE PROBLEMS \dagger

Martin Schechter and Kyril Tintarev
Department of Mathematics, University of California, Irvine, CA 92717 USA

(Submitted by: L.C. Evans)

Introduction. In this paper we study a semilinear eigenvalue problem with Dirichlet boundary condition:

$$
\begin{equation*}
\rho A u=f(x, u) \quad \text { on a bounded domain } \Omega \subset \mathbb{R}^{n} . \tag{1.1}
\end{equation*}
$$

The operator A is a selfadjoint strongly elliptic differential operator of even order 2ℓ with smooth coefficients.

We consider an analog of the first eigenvalue in the linear problem

$$
\begin{equation*}
-\Delta u=\lambda u, \quad u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

Let $\|u\|^{2}=\int_{\Omega}|\nabla u(x)|^{2} d x$ and

$$
\begin{equation*}
\gamma(t)=\sup _{\|u\|^{2}=t} \frac{1}{2} \int u(x)^{2} d x \tag{1.3}
\end{equation*}
$$

Then $\gamma(t)=\frac{1}{2} \rho_{1} t$, where $\rho_{1}=1 / \lambda_{1}$ and λ_{1} is the first eigenvalue of (1.2). The supremum in (1.3) is attained at $u_{t}=\sqrt{t} u_{1}$, where u_{1} is the first (normalized) eigenfunction in (1.2).

In a similar way we consider $g(u)=\int F(x, u(x)) d x$ and

$$
\begin{equation*}
\gamma(t)=\sup _{\|u\|^{2}=t} g(u) \tag{1.4}
\end{equation*}
$$

where $\|u\|^{2}$ is a quadratic form of A, equivalent to the Sobolev metric.
It happens that under certain conditions $\gamma(t)$ is a monotone increasing function, the supremum (1.4) is attained and γ has left and right derivatives $\gamma_{ \pm}^{\prime}$ at every point. These are related to eigenvalues: there exists $u_{ \pm}$, such that $\left\|u_{ \pm}\right\|^{2}=t$ and

$$
\begin{equation*}
2 \gamma_{ \pm}^{\prime}(t) A u_{ \pm}=F_{u}^{\prime}\left(x, u_{ \pm}\right), \quad \gamma_{ \pm}^{\prime}(t) \geq 0 . \tag{1.5}
\end{equation*}
$$

In Section 2, we provide a preliminary analysis of the function (1.4) in an abstract framework. In Section 3, we apply the results to elliptic operators.

[^0]
[^0]: Received April 20, 1989.
 \dagger Research supported in part by an NSF grant.
 AMS(MOS) Subject Classifications: 35P30, 35J65, 47 H 15.

