MATHEMATICAL STUDY OF A NONLINEAR TRANSPORT-DIFFUSION PROBLEM RELATED TO MUSCLE CONTRACTION

Pierluigi Colli

Dipartimento di Matematica, Università di Pavia, Strada Nuova, 65, 27100 Pavia, Italy

Maurizio Grasselli

Istituto di Analisi Numerica del C.N.R., Corso Carlo Alberto, 5, 27100 Pavia, Italy

(Submitted by: L.A. Caffarelli)

In memory of our friend Giovanni Sacchi Landriani

Abstract. We analyse a transport-diffusion initial-boundary value problem where the coefficient of the transport term is a time function depending on the solution in a nonlinear and nonlocal way. Using fixed-point techniques, we prove an uniqueness and local existence result. The problem is related to a new model describing muscle contraction in the framework of sliding filaments theory, including the slipping effects in the cross-bridge dynamics.

1. Introduction. In this paper we study from a mathematical point of view the following nonlinear and nonlocal initial-boundary value problem.

Find a function $u: [-1,1] \times [0,T] \to \mathbb{R}$ satisfying

$$u_t - (\varepsilon(x)u_x)_x + \dot{z}(t)u_x = \varphi(x, t, z(t), u) \quad \text{a.e. in } [-1, 1] \times [0, T],$$

$$\tag{1.1}$$

$$u(-1,t) = u(1,t) = 0$$
 for $t \in [0,T]$, (1.2)

$$u(x,0) = u_0(x)$$
 for $x \in [-1,1],$ (1.3)

where the dot denotes the time derivative and the function $z:[0,T]\to\mathbb{R}$ is related to u by the nonlocal equation

$$z(t) = L\left(\int_{-1}^{1} w(x)u(x,t) \, dx\right) \quad \text{for } t \in [0,T]. \tag{1.4}$$

Here T > 0, $\varepsilon : [-1,1] \to \mathbb{R}$ is a strictly positive function, φ is Lipschitz continuous with respect to z(t) and u, L is a smooth (in a sense to be made precise later)

Received June 6, 1989.

Work supported by M.P.I. (fondi per la ricerca scientifica) and by I.A.N. of C.N.R., Pavia. AMS Subject Classifications: 35A07, 35C15, 35G25, 35G30, 35Q99, 73P05.