EXPONENTIAL ASYMPTOTIC STABILITY FOR SCALAR LINEAR VOLTERRA EQUATIONS

Satoru Murakami
Department of Applied Mathematics, Okayama University of Science
Ridai-cho 1-1, Okayama 700, Japan

(Submitted by: C. Corduneanu)

Abstract

Exponential asymptotic stability of the zero solution of the scalar linear Volterra equation $$
\dot{x}(t)=A x(t)+\int_{0}^{t} B(t-s) x(s) d s
$$ is studied. Roughly speaking, it is proved that the exponential asymptotic stability can be characterized by a growth condition on $B(t)$. The result answers the problem posed by Corduneanu and Lakshmikantham

In this article, we shall be concerned with a linear Volterra equation with an integrable kernel B,

$$
\begin{equation*}
\dot{x}(t)=A x(t)+\int_{0}^{t} B(t-s) x(s) d s \quad t \geq 0 \tag{E}
\end{equation*}
$$

and study the exponential asymptotic stability of the zero solution of (E) in conjunction with the exponential behavior of $|B(t)|$ as $t \rightarrow \infty$. The subject deeply relates to the paper [1] due to Corduneanu and Lakshmikantham. In fact, they have posed the following problem [1, pp. 845-848]: If the zero solution of (E) is uniformly asymptotically stable, then is it of exponential type? To analyze the problem, we shall focus our attention to the case where (E) is a scalar equation, and show (Theorem 1) that if B satisfies a growth condition, then the above problem can be solved in the affirmative. Furthermore, under the restriction on B, we shall investigate the converse of our Theorem 1 , too. In fact, under the assumption that $B(t)$ does not change sign on $[0, \infty)$, we prove (Theorem 2) that if the zero solution of (E) possesses the stability property of exponential type, then B satisfies a growth condition. Thus (roughly speaking) the stability of exponential type for the zero solution of (E) can be characterized by a growth condition on B (Theorem 3). Hence, the stability of exponential type can never be realized for the equation with a kernel B which does not satisfy a growth condition, and the problem posed above can be solved in the negative.

[^0]
[^0]: Received April 11, 1990.
 AMS Subject Classifications: 34D20, 45 M 10 .

