QUADRATIC SYSTEMS WITH A CRITICAL POINT OF HIGHER MULTIPLICITY

W.A. COPPEL

Department of Theoretical Physics, Research School of Physical Sciences Australian National University, GPO Box 4, Canberra, A.C.T. 2601, Australia

(Submitted by: K.L. Cooke)

Abstract. We study plane quadratic systems which have a critical point of multiplicity greater than two, either in the finite plane or at infinity, and show that in many cases they have at most one limit cycle.

1. Introduction. Let

$$x' = P(x, y), \quad y' = Q(x, y)$$
 (1)

be a holomorphic system of differential equations with an isolated critical point $M = (x_0, y_0)$. We define the *multiplicity* of the critical point M to be its multiplicity as a point of intersection of the analytic curves P = 0 and Q = 0; i.e., it is the greatest integer m for which there exist functions $f_1(x, y), \ldots, f_m(x, y)$, holomorphic at M and such that if

$$c_1f_1 + \dots + c_mf_m = \alpha P + \beta Q,$$

where c_1, \ldots, c_m are complex numbers and $\alpha(x, y)$, $\beta(x, y)$ are functions holomorphic at M, then $c_1 = \cdots = c_m = 0$. By taking $f_1 = 1$ we see that $m \ge 1$. By taking the Jacobian matrix of P and Q to be in triangular form at M we see that the critical point M has multiplicity 1 if and only if it is *elementary*; i.e., the Jacobian determinant $P_xQ_y - P_yQ_x$ is nonzero at M.

Suppose the critical point M is *semi-elementary*; i.e., the Jacobian determinant vanishes at M but the divergence $P_x + Q_y$ does not. Without loss of generality we may assume M = (0,0) and

$$P(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + \dots$$
$$Q(x, y) = y + b_{20}x^2 + b_{11}xy + b_{02}y^2 + \dots$$

Then near the origin the curve Q(x, y) = 0 has the form $y = \varphi(x)$, where φ is holomorphic and $\varphi(0) = \varphi'(0) = 0$. Since the origin is assumed to be an isolated critical point we have

$$\psi(x) := P[x,\varphi(x)] = \Delta_m x^m + \dots,$$

Received February 7, 1989, in revised June 23, 1989.

AMS Subject Classifications: 34C05, 58F21.