DIFFERENTIAL EQUATIONS ASSOCIATED WITH COMPACT EVOLUTION GENERATORS

N.H. Pavel
Department of Mathematics, University of Texas at Arlington Arlington, Texas 76019, USA

(Submitted by C. Corduneanu)

Abstract

Let $U(t, s)$ be the evolution operator generated by a family of nonlinear, possibly multivalued operators $\{A(t), 0 \leq t \leq T\}$ of dissipative type acting in a Banach space X. We prove that if $x \rightarrow U(t, s) x, s<t \leq T$ is compact and $F(t): \overline{D(A(t))} \rightarrow X$ is continuous then the Cauchy Problem $u^{\prime} \in A(t) u+F(t) u, u(s)=x_{0} \in \overline{D(A(s))}$ has at least an integral solution. One extends the results of Pazy [12] and Vrabie [13] as well as the classical result on the behaviour of the solution as $t \uparrow t_{\max }$.

1. Statement of main results. Let X be a real space of norm $\|\cdot\|$. Denote by J the duality mapping of X and set

$$
\begin{align*}
& \langle y, x\rangle_{i}=\inf \left\{x^{*}(y) ; x^{*} \in J(x)\right\} ;\langle y, x\rangle_{-}=\langle y, x\rangle_{i}\|x\|^{-1} \\
& \langle y, x\rangle_{\tilde{s}}=\sup \left\{x^{*}(y) ; x^{*} \in J(x)\right\} ;\langle y, x\rangle_{+}=\langle y, x\rangle_{\tilde{s}}\|x\|^{-1} \tag{1.1}
\end{align*}
$$

where $y, x \in X, x \neq 0$.
We shall be concerned with the abstract differential equation (inclusion)

$$
\begin{equation*}
u^{\prime}(t) \in A(t) u(t)+F(t) u(t), u(s)=x_{0} \in \overline{D(A(s))}, 0 \leq t<T \tag{1.2}
\end{equation*}
$$

for some $T>0$. The hypotheses on $\{A(t)\}:$ For each $t \in[0, T], A(t): D(A(t)) \subset X \rightarrow 2^{X}$ satisfies the range condition
(C1) $R(I-h A(t))=X$, for all $h>0$ and $t \in[0, T]$ where I is the identity on X.
(C2) There are two continuous functions $f:[0, T] \rightarrow X$ and $L:[0,+\infty[\rightarrow[0,+\infty[$ such that:

$$
\left\langle y_{1}-y_{2}, x_{1}-x_{2}\right\rangle_{i} \leq\|f(t)-f(s)\|\left\|x_{1}-x_{2}\right\| L\left(\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\}\right)
$$

for all $0 \leq s \leq t \leq T,\left[x_{1}, y_{1}\right] \in A(t)$ and $\left[x_{2}, y_{2}\right] \in A(s)$.
(C3) If $t_{n} \uparrow t, x_{n} \in D\left(A\left(t_{n}\right)\right)$ and $x_{n} \rightarrow x$, then $x \in \overline{D(A(t))}\left(t_{n}, t \in[0, T]\right)$.
(C4) The evolution operator $U(t, s)$ generated by $\{A(t), 0 \leq t \leq T\}$ is compact (i.e. for every $0 \leq s<t \leq T$, the operator $x \rightarrow U(t, s) x$ maps bounded subsets of $\overline{D(A(s))}$ into relatively compact (precompact) subsets of X).

AMS(MOS) Subject Classifications: 35K22, 34G20.

