Differential and Integral Equations, Volume 1, Number 1, January 1988, pp. 117-123.

DIFFERENTIAL EQUATIONS ASSOCIATED WITH COMPACT EVOLUTION GENERATORS

N.H. PAVEL

Department of Mathematics, University of Texas at Arlington Arlington, Texas 76019, USA

(Submitted by C. Corduneanu)

Abstract. Let U(t,s) be the evolution operator generated by a family of nonlinear, possibly multivalued operators $\{A(t), 0 \le t \le T\}$ of dissipative type acting in a Banach space X. We prove that if $x \to U(t,s)x$, $s < t \le T$ is compact and $F(t) : \overline{D(A(t))} \to X$ is continuous then the *Cauchy* Problem $u' \in A(t)u + F(t)u$, $u(s) = x_0 \in \overline{D(A(s))}$ has at least an integral solution. One extends the results of Pazy [12] and Vrabie [13] as well as the classical result on the behaviour of the solution as $t \uparrow t_{max}$.

1. Statement of main results. Let X be a real space of norm $\|\cdot\|$. Denote by J the duality mapping of X and set

$$\langle y, x \rangle_i = \inf \{ x^*(y); \ x^* \in J(x) \}; \ \langle y, x \rangle_- = \langle y, x \rangle_i \|x\|^{-1} \langle y, x \rangle_{\tilde{s}} = \sup \{ x^*(y); \ x^* \in J(x) \}; \ \langle y, x \rangle_+ = \langle y, x \rangle_{\tilde{s}} \|x\|^{-1}$$

$$(1.1)$$

where $y, x \in X, x \neq 0$.

We shall be concerned with the abstract differential equation (inclusion)

$$u'(t) \in A(t)u(t) + F(t)u(t), \ u(s) = x_0 \in \overline{D(A(s))}, \ 0 \le t < T$$
(1.2)

for some T > 0. The hypotheses on $\{A(t)\}$: For each $t \in [0,T]$, $A(t) : D(A(t)) \subset X \to 2^X$ satisfies the range condition

- (C1) R(I hA(t)) = X, for all h > 0 and $t \in [0, T]$ where I is the identity on X.
- (C2) There are two continuous functions $f : [0,T] \to X$ and $L : [0,+\infty[\to [0,+\infty[$ such that:

$$\langle y_1 - y_2, x_1 - x_2 \rangle_i \le \|f(t) - f(s)\| \|x_1 - x_2\| L\Big(\max\{\|x_1\|, \|x_2\|\}\Big)$$

for all $0 \le s \le t \le T$, $[x_1, y_1] \in A(t)$ and $[x_2, y_2] \in A(s)$.

- (C3) If $t_n \uparrow t$, $x_n \in D(A(t_n))$ and $x_n \to x$, then $x \in \overline{D(A(t))}$ $(t_n, t \in [0, T])$.
- (C4) The evolution operator U(t,s) generated by $\{A(t), 0 \le t \le T\}$ is compact (i.e. for every $0 \le s < t \le T$, the operator $x \to U(t,s)x$ maps bounded subsets of $\overline{D(A(s))}$ into relatively compact (precompact) subsets of X).

Received August 24, 1987.

AMS(MOS) Subject Classifications: 35K22, 34G20.