PERIODIC SOLUTIONS OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS WHICH APPROXIMATE DELAY EQUATIONS

F. KAPPEL[†]

Institute for Mathematics, University of Graz, A-8010 Graz, Austria

KLAUS SCHMITT‡

Department of Mathematics, University of Utah, Salt Lake City, Utah 84122 USA

1. Introduction. Let $\alpha > 0$ and $f : \mathbf{R} \to \mathbf{R}$ be given. The scalar delay-differential equation

$$\dot{x}(t) = -\alpha f(x(t-1)), \quad t \ge 0,$$

$$x(t) = \phi(t), \quad -1 \le t \le 0,$$
(1.1)

has been investigated thoroughly since the early sixties and many beautiful results have been found concerning existence of nontrivial periodic solution of this equation (see for instance [8,9,12-14] and the references in these papers). During the past decade one can also see an increasing interest in a class of numerical approximation schemes for delay equations based on abstract approximation results for strongly continuous semigroups of transformations (see for instance [2,3,7]). The various schemes developed during the last years have remarkable qualitative properties. For instance, in case of the scheme developed in [2] and in [7], the approximating ordinary differential systems inherit stabilizability, detectability and exponential stability from the linear delay system which is approximated.

In this paper we study a very simple approximation scheme for (1.1) and demonstrate that the approximating ordinary differential systems inherit from (1.1) the occurence of Hopf-bifurcations and the existence of global branches of nontrivial periodic solution.

The approximation scheme used in this paper was developed in [10]. For N = 1, 2, ..., let $X^N = \{\phi \in C(-1, 0; \mathbf{R}) | \phi \text{ is a 1st order spline on } [-1, 0] \text{ with knots at the points } -j/N, j = 0, ..., N\}$. Furthermore, let $\pi^N : C(-1, 0; \mathbf{R}) \to X^N$ be defined by interpolation at the meshpoints, i.e.

$$(\pi^N \phi)(-\frac{j}{N}) = \phi(-\frac{j}{N}), \quad j = 0, \dots, N,$$

Received October 6, 1987.

[†]Research supported by Fonds zur Förderung der wissenschaftlichen Forschung, Projects Nos. P4534 and S3206.

[‡]Research supported by an NSF Grant.

AMS(MOS) Subject Classifications: 34K15, 65L99.