AN EXACT FORMULA FOR THE BRANCH OF PERIOD-4-SOLUTIONS OF $\dot{x}=-\lambda f(x(t-1))$ WHICH BIFURCATES AT $\lambda=\pi / 2$

O. Arino and A.A. Chérif
Département de Mathématiques, Faculté des Sciences, 64000 Pau, France and Department of Mathematics, University of Mississippi, University, MS 38677 USA

(Submitted by: A.R. Aftabizadeh)

Introduction. In this paper, we construct an exact formula for the periods of solutions of the following system of ordinary differential equations

$$
\left\{\begin{array}{l}
\dot{x}=-\lambda f(y(t)) \tag{1}\\
\dot{y}=\lambda f(x(t))
\end{array}\right.
$$

Throughout the paper, we assume that f is a function which satisfies the following conditions: $f(x) x>0$ for $x \neq 0, f$ is odd and differentiable, $f^{\prime}(0)=1$. The formula we obtain for the periods is a function $T\left(x_{0}, \lambda\right)$ of λ and $x_{0}>0$ where $\left(x_{0}, 0\right)$ is any initial data for system (1). It is known (see [4]) that period-4-solutions of (1) yield period-4-solutions of

$$
\begin{equation*}
\dot{x}=-\lambda f(x(t-1)) \tag{2}
\end{equation*}
$$

For these solutions, $T\left(x_{0}, \lambda\right)$ yields a function $\lambda\left(x_{0}\right)$ which shows that a branch of period-4solutions of (2) bifurcates at $\lambda=\pi / 2$. Using $\lambda\left(x_{0}\right)$, we show that the higher derivatives of f at 0 determine the behaviour of the branch near $\pi / 2$.

Section 1. In this section, we construct the formula for periods of the solutions of system (1) with initial value of the form $(x(0), y(0))=\left(x_{0}, 0\right)$, where $x_{0}>0$. We assume that there exists a real interval I containing 0 and that f verifies the following hypothesis on I :

$$
\begin{equation*}
\left\{f \text { is odd and } f \in C^{1}(I), f(x) x>0 \text { for } x \neq 0, \text { and } f^{\prime}(0)=1\right\} \tag{H1}
\end{equation*}
$$

Proposition 1.1. Assume that f satisfies the hypothesis (H1) and consider the following initial value problem

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-\lambda f(y(t)) \tag{1}\\
\frac{d y}{d t}=\lambda f(x(t)) \\
(x(0), y(0))=\left(x_{0}, 0\right) \quad \text { where } x_{0} \in I
\end{array}\right.
$$

