Erratum

Volume 2, Number 1 (1989), in the article "Multiple Periodic Solutions of some Nonlinear Ordinary Differential Equations of Higher Order," by Miguel Ramos and Luis Sanchez, pages 81-90:

The argument in Theorem 3 which provides the contradiction

$$
J(v+\epsilon(\phi-b))<J(v)
$$

does not apply. Indeed, the function ϕ depends on s and therefore, we cannot deduce that the coefficient of ϵ is negative.

The problem of the validity of Theorem 3 remains open. We replace it by a somewhat related theorem.
3. A case where \mathbf{g} has polynomial growth. In this section we use a minimization argument to partially extend Theorem 1. Precisely, we take m to be an even integer and consider the variational problem

$$
(-1)^{\frac{m}{2}} u^{(m)}+g(t, u)=s, \quad u^{(i)}(0)=u^{(i)}(2 \pi), \quad i=0,1, \cdots, m-1
$$

Assume the following hypothesis on g.
(H3). There exist positive numbers $A, A^{\prime}, C, C^{\prime} R$ and $p \geq 2$, such that, if we let $q=p /(p-1)$ and $G(t, u)=\int_{0}^{u} g(t, x) d x$, we have

$$
|G(t, u)| \leq \begin{cases}A \frac{|u|^{p}}{p}+A^{\prime} & \text { if }(t, u) \in[0,2 \pi] \times[R,+\infty) \\ C \frac{|u|^{q}}{q}+C^{\prime} & \text { if }(t, u) \in[0,2 \pi] \times(-\infty,-R]\end{cases}
$$

Theorem 3. Let $g(t, u)$ be a continuous and positive function defined on $[0,2 \pi] \times \mathbb{R}$, satisfying (H) and (H3). Assume further that

$$
C<A^{1-q}(2 \pi)^{q / 2}+\frac{q}{2}(2 \pi)^{(q-2) / 2}
$$

Then problem (P^{\prime}) has property B.
Proof: Consider, in the Hilbert space $X=H_{2 \pi}^{\frac{m}{2}}$ (with norm given by $\left.\left(|u|_{2}^{2}+\left|u^{\left(\frac{m}{2}\right)}\right|_{2}^{2}\right)^{\frac{1}{2}}\right)$, the functional

$$
I(u)=\int_{0}^{2 \pi}\left[\frac{u^{(j)^{2}}}{2}+G(t, u)-s u\right] d t
$$

Here we have written $j=m / 2$. This functional is, of course, of class C^{1} and its critical points in X are precisely the solutions of $\left(P^{\prime}\right)$; moreover, I is weakly lower semicontinuous. For each $s>0$, introduce the closed and convex subset of X

$$
K=\left\{v \in X: \bar{v} \geq 0 \text { and }\left|v^{(j)}\right|_{2} \leq 2 \pi s\right\}
$$

