Differential and Integral Equations, Volume 2, Number 4, October 1989, pp. 471-478.

ON THE INVERSION OF LAGRANGE-DIRICHLET THEOREM*

VINICIO MOAURO AND PIERO NEGRINI Dipartimento di Matematica dell'Università di Trento, 38050 Povo-Trento, Italy

(Submitted by: Luigi Salvadori)

Abstract. The inversion of the Lagrange-Dirichlet theorem is proved under the hypothesis that the potential function U of the acting force is *h*-differentiable, h > 3, and the lack of a local maximum of U at the equilibrium position is recognizable by means of the non-vanishing terms with lowest degree in the expansion of U. This result extends a previous one relative to infinitely differentiable potential functions and is obtained by using known results concerning the existence of invariant stable manifolds.

Introduction. The Lagrange-Dirichlet theorem, as is well known, provides a sufficient condition for the stability of an equilibrium position of a conservative mechanical system. Precisely, let S be a holonomic mechanical system with a finite number n of degrees of freedom and let $q = (q_1, \dots, q_n)$ be a system of Lagrangian coordinates for S. Let us suppose that a conservative force with potential function $U : \Omega \to \mathbb{R}$, Ω neighborhood of the origin of \mathbb{R}^n , $U \in C^h$, $h \geq 2$, acts on S. Finally, let q = 0 be an equilibrium position of S. The L.-D. theorem assures that q = 0 is stable if U has a strict local maximum at q = 0. As also is well known, the L.-D. criterium is not invertible. Therefore, the question arises: under what additional conditions the lack of a strict local maximum of U at q = 0 implies the instability of this equilibrium position. Starting from Liapunov, many answers have been given. We will quote some of the most relevant ones. Denoting by $U_{[i]}$, $i = 2, \dots, h$, the term of degree i in the development of U in the neighborhood of the origin, the following criteria of instability hold. The equilibrium position q = 0 is unstable if one of the following conditions holds:

- i₁) $U_{[2]}$ does not have a maximum at q = 0 (Liapunov [7]);
- i₂) h > 2, \exists a positive integer $k, 2 < k \leq h$, such that $U_{[2]} = \cdots = U_{[k-1]} = 0$ and $U_{[k]}$ has a proper minimum at q = 0 (Liapunov [7]);
- i₃) U is an homogeneous polynomial and does not have a maximum at q = 0 (Cetaev [1]);
- i₄) U has a proper local minimum at q = 0 (Hagedorn [3]);
- i₅) h > 2, \exists a positive integer k, $2 < k \leq h$, such that $U_{[2]} = \cdots = U_{[k-1]} = 0$, q = 0 is an isolated critical point for $U_{[k]}$, and $U_{[k]}$ does not have a maximum at q = 0 (Palamadov [8]);

Received October 20, 1988.

^{*}Work performed under the auspices of the National Group of Mathematical Physics of C.N.R., and the Italian Ministry of Public Education (M.P.I.).

AMS Subject Classifications: 70K20, 34D05.