ON THE INVERSION OF LAGRANGE-DIRICHLET THEOREM*

Vinicio Moauro and Piero Negrini
Dipartimento di Matematica dell'Università di Trento, 38050 Povo-Trento, Italy

(Submitted by: Luigi Salvadori)

Abstract

The inversion of the Lagrange-Dirichlet theorem is proved under the hypothesis that the potential function U of the acting force is h-differentiable, $h>3$, and the lack of a local maximum of U at the equilibrium position is recognizable by means of the nonvanishing terms with lowest degree in the expansion of U. This result extends a previous one relative to infinitely differentiable potential functions and is obtained by using known results concerning the existence of invariant stable manifolds.

Introduction. The Lagrange-Dirichlet theorem, as is well known, provides a sufficient condition for the stability of an equilibrium position of a conservative mechanical system. Precisely, let S be a holonomic mechanical system with a finite number n of degrees of freedom and let $q=\left(q_{1}, \cdots, q_{n}\right)$ be a system of Lagrangian coordinates for S. Let us suppose that a conservative force with potential function $U: \Omega \rightarrow \mathbb{R}, \Omega$ neighborhood of the origin of $\mathbb{R}^{n}, U \in C^{h}, h \geq 2$, acts on S. Finally, let $q=0$ be an equilibrium position of S. The L.-D. theorem assures that $q=0$ is stable if U has a strict local maximum at $q=0$. As also is well known, the L.-D. criterium is not invertible. Therefore, the question arises: under what additional conditions the lack of a strict local maximum of U at $q=0$ implies the instability of this equilibrium position. Starting from Liapunov, many answers have been given. We will quote some of the most relevant ones. Denoting by $U_{[i]}, i=2, \cdots, h$, the term of degree i in the development of U in the neighborhood of the origin, the following criteria of instability hold. The equilibrium position $q=0$ is unstable if one of the following conditions holds:
$\left.\mathrm{i}_{1}\right) U_{[2]}$ does not have a maximum at $q=0$ (Liapunov [7]);
$\left.\mathrm{i}_{2}\right) h>2, \exists$ a positive integer $k, 2<k \leq h$, such that $U_{[2]}=\cdots=U_{[k-1]}=0$ and $U_{[k]}$ has a proper minimum at $q=0$ (Liapunov [7]);
i_{3}) U is an homogeneous polynomial and does not have a maximum at $q=0$ (Cetaev [1]);
i_{4}) U has a proper local minimum at $q=0$ (Hagedorn [3]);
$\left.\mathrm{i}_{5}\right) h>2$, \exists a positive integer $k, 2<k \leq h$, such that $U_{[2]}=\cdots=U_{[k-1]}=0, q=0$ is an isolated critical point for $U_{[k]}$, and $U_{[k]}$ does not have a maximum at $q=0$ (Palamadov [8]);

[^0]
[^0]: Received October 20, 1988.
 *Work performed under the auspices of the National Group of Mathematical Physics of C.N.R., and the Italian Ministry of Public Education (M.P.I.).
 AMS Subject Classifications: 70K20, 34D05.

