SCATTERING THEORY FOR HIGHER ORDER EQUATIONS

Douglas Pickett

Department of Mathematics, Tulane University, New Orleans, LA 70118 USA

(Submitted by: J.A. Goldstein)

Abstract. This paper deals with scattering theory for equations of the form $\prod_{k=1}^{M}(\frac{d}{dt}-B_k)u(t)=0$, where $M=2^N$ with N a positive integer, and $\{B_k\}$ are M commuting, skew-adjoint operators on a Hilbert space \mathcal{H} . It has been shown [3] that equations of this form may be written $\frac{d}{dt}v(t)=\mathbf{A}v(t)$ on \mathcal{H}^M , where \mathbf{A} is a skew-adjoint, M by M matrix of operators on the Hilbert space \mathcal{H}^M . This matrix will be shown to be unitarily equivalent to the $M\times M$ diagonal matrix with the operators $\{B_k\}$ on the diagonal. If $\{B_k^n\}$, n=0,1, are two families of commuting, skew-adjoint operators on \mathcal{H} , let \mathbf{A}^n , n=0,1, be the matrices of operators on \mathcal{H}^M corresponding to $\{B_k^n\}$, n=0,1. It will be shown that the wave operators $\Omega_{\pm}(iB_k^1,iB_k^0)$ on \mathcal{H} exist (and are complete) for $k=1,2,\ldots,M$, if and only if the wave operators $\Omega_{\pm}(i\mathbf{A}^1,i\mathbf{A}^0)$ exist (and are complete). This result will be applied to the equations of linear elasticity.

1. Introduction. Given a pair of self-adjoint operators H_1 , H_0 on a Hilbert space \mathcal{H} , let $\mathcal{H}_{j,ac}$, j=0,1, denote the subspace of absolute continuity for H_j , j=0,1, and let P_j^{ac} be the orthogonal projection onto it. The wave operators $W_{\pm}(H_1, H_0)$ are defined by

$$W_{\pm}(H_1, H_0)f = \lim_{t \to \pm \infty} e^{itH_1} e^{-itH_0} P_0^{ac} f, \quad \text{for } f \in \mathcal{H},$$

provided this limit exists. (See [4] for details.)

If the wave operators exist and are complete (i.e., Range $W_{\pm}(H_1, H_0) = \mathcal{H}_{1,ac}$), the scattering operator

$$S(H_1, H_0) = W_+^*(H_1, H_0)W_-(H_1, H_0)$$

is a unitary operator on $H_{0,ac}$.

This describes the case in which the "simple, unperturbed" equation,

$$i\frac{du_0}{dt} = H_0 u_0(t) \qquad (t \in \mathbf{R}),$$

Received November 12, 1988.

AMS Subject Classifications: 35L30, 35P25, 47A40, 73C99.