COMPARISON OF EIGENVALUES FOR FOCAL POINT PROBLEMS FOR n-th ORDER DIFFERENCE EQUATIONS

Darrel Hankerson
Department of Algebra, Combinatorics \& Analysis, Auburn University, Auburn, AL 36849 USA

Allan Peterson

Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588 USA
(Submitted by: V. Lakshmikantham)

Abstract

Existence and comparison theorems for eigenvalues of $(k, n-k)$-focal boundary value problems are given for a class of nth order difference equations. The techniques involve the theory of operators on a Banach space. Typically, "positivity" conditions are placed on the coefficient functions in the difference equation in order that related operators be u_{0}-positive. In addition, we show how these requirements can be relaxed and still obtain existence and comparison results.

1. Introduction. We are mainly interested in proving the existence of a smallest positive eigenvalue for the focal boundary value problem (1), (3) below and in proving comparison theorems for the focal boundary value problems

$$
\begin{equation*}
\Delta^{n-k}\left[a(t) \Delta^{k} u(t)\right]=(-1)^{n-k} \lambda\left\{\sum_{i=0}^{k-1} p_{i}(t) \Delta^{i} u(t)+\sum_{i=0}^{n-k-1} p_{k+i}(t) \Delta^{i}\left[a(t) \Delta^{k} u(t)\right]\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{n-k}\left[A(t) \Delta^{k} u(t)\right]=(-1)^{n-k} \Lambda\left\{\sum_{i=0}^{k-1} P_{i}(t) \Delta^{i} u(t)+\sum_{i=0}^{n-k-1} P_{k+i}(t) \Delta^{i}\left[A(t) \Delta^{k} u(t)\right]\right\} \tag{2}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{array}{ll}
\Delta^{i} u(\alpha)=0, & 0 \leq i \leq k-1 \\
\Delta^{k+i} u(\beta+1)=0, & 0 \leq i \leq n-k-1, \tag{3}
\end{array}
$$

under suitable conditions on the coefficients. Here, Δ is the difference operator defined by $\Delta y(t)=y(t+1)-y(t)$ and t is a discrete variable taking on the integer values $\alpha \leq t \leq \beta+n$. We assume throughout that $\beta \geq \alpha+k$ and $a(t)>0, A(t)>0$

