OSCILLATION FOR SELF-ADJOINT SECOND ORDER MATRIX DIFFERENTIAL EQUATIONS

W.J. Coles
Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA

(Submitted by: Klaus Schmitt)

Abstract

Oscillation theorems are established for the self-adjoint matrix differential equation $\left(P Y^{\prime}\right)^{\prime}+Q Y=0$. Methods and results are similar to those in references [3] and [4] (the scalar case) and [2] (the matrix case $Y^{\prime \prime}+Q Y=0$).

1. Introduction. Consider the $n \times n$ matrix differential equation

$$
\begin{equation*}
\left(P(t) Y^{\prime}\right)^{\prime}+Q(t) Y=0 \tag{1}
\end{equation*}
$$

on $[0,+\infty)$, where $P(t)$ and $Q(t)$ are real, continuous, and symmetric, and $P(t)>0$ ($P(t)$ is positive definite). A solution $Y(t)$ is prepared if

$$
Y^{*}\left(P Y^{\prime}\right)-\left(P Y^{\prime}\right)^{*} Y \equiv 0
$$

(* denotes transpose), and (1) is oscillatory on $[0,+\infty)$ provided, for each $a \geq 0$, the determinant of each nontrivial prepared solution has a zero on $[a,+\infty)$.

There are extensions to (1) of the oscillation theory for the scalar equation

$$
\begin{equation*}
\left(p(t) y^{\prime}\right)^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

to (1) (see [1], [2] for references). In particular, a conjecture appeared in [5] that

$$
\begin{equation*}
Y^{\prime \prime}+Q(t) Y=0 \tag{3}
\end{equation*}
$$

is oscillatory provided

$$
\lambda_{1}\left\{\int_{0}^{t} Q\right\} \rightarrow+\infty \quad \text { as } \quad t \rightarrow \infty
$$

(λ_{1} is the greatest eigenvalue), a direct analog of the result that

$$
\begin{equation*}
y^{\prime \prime}+q(t) y=0 \tag{4}
\end{equation*}
$$

is oscillatory if $\int_{0}^{\infty} q=+\infty([6])$.
After partial results by several authors (see [2] for references), Byers, Harris and Kwong proved

