EXISTENCE THEOREMS FOR FOCAL BOUNDARY VALUE PROBLEMS

S. Umamaheswaram and M. Venkata Rama \dagger
School of Mathematics and Computer Information Sciences University of Hyderabad, Central University P.O., Hyderabad - 500 134, India

(Submitted by: A.R. Aftabizadeh)

Abstract

Sufficient conditions in terms of f and some auxiliary functions $u(x), v(x)$ are given for the existence of a solution of the 2-point right focal boundary value problem $y^{(n)}=$ $f\left(x, y, \ldots, y^{(n-1)}\right), y^{(i)}\left(x_{1}\right)=y_{1 i}, i=0, \ldots, m-1, y^{(i)}\left(x_{2}\right)=y_{2 i}, i=m, \ldots, n-1$ where $1 \leq m<n$ is an arbitrary integer and $x_{1}<x_{2}, y_{1 i}, y_{2 i}$ are arbitrary real numbers. An alternative set of sufficient conditions entirely in terms of f are also given for the above boundary value problem.

1. Introduction. We are interested in the differential equation

$$
\begin{equation*}
y^{(n)}=f\left(x, y, \ldots, y^{(n-1)}\right) \tag{1.1}
\end{equation*}
$$

along with "2-point right focal" boundary conditions (BC's)

$$
\begin{cases}y^{(i)}\left(x_{1}\right)=y_{1 i}, & i=0, \ldots, m-1 \tag{1.2}\\ y^{(i)}\left(x_{2}\right)=y_{2 i}, & i=m, \ldots, n-1\end{cases}
$$

where $n>1$ is a fixed positive integer, f is continuous $I \times \mathbb{R}^{n}(I \subset \mathbb{R}$ an interval $)$, $1 \leq m<n$ is an arbitrary integer and $x_{1}, x_{2} \in I\left(x_{1}<x_{2}\right), y_{1 i}, y_{2 i}$ are arbitrary real numbers.

There are only a few theorems in the literature which give sufficient conditions for the existence of a solution of the " k-point right focal" boundary value problem (BVP) (1.1) and

$$
\begin{equation*}
y^{(i)}\left(x_{r}\right)=y_{r i}, \quad i=s(r-1), \ldots, s(r)-1 ; \quad r=1, \ldots, k \tag{1.3}
\end{equation*}
$$

where $k(1<k \leq n), n(1), \ldots, n(k)$ are arbitrary but fixed integers; $s(0)=0$, $s(r)=n(1)+\cdots+n(r), r=1, \ldots k, s(k)=n, x_{r} \in I\left(x_{1}<\cdots<x_{k}\right)$ and $y_{r i}$ are arbitrary real numbers.

[^0]
[^0]: Received November 1988.
 \dagger This author is supported by a fellowship of the University Grants Commission, New Delhi, India. His work is in partial fulfilment of the requirements for a doctoral degree at the University of Hyderabad.
 AMS Subject Classifications: 34B15, 34B10.

