ASYMPTOTIC STABILITY FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

Nobuyuki Kenmochi
Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan

(Submitted by: Peter Hess)

Abstract

In this paper we study a quasilinear degenerate parabolic equation with Neumann boundary condition of the form $u_{t}-\Delta \beta(u) \ni f(t, x)$ in $\mathbb{R} \times \Omega, \partial_{n} \beta(u) \ni h(t, x)$ on $\mathbb{R} \times \partial \Omega$, where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega, \beta$ is a given maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ and f, g are given functions. We shall show the existence of a periodic solution in time and its stability as $t \rightarrow+\infty$.

1. Introduction. In this paper we study the following quasilinear parabolic equation:

$$
\begin{align*}
& u_{t}-\Delta \tilde{\beta}=f, \quad \tilde{\beta} \in \beta(u), \quad \text { in } \mathbb{R} \times \Omega, \tag{1.1}\\
& \partial_{n} \tilde{\beta}=h \quad \text { on } \mathbb{R} \times \Gamma \tag{1.2}
\end{align*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with sufficiently smooth boundary $\Gamma=\partial \Omega ; \beta$ is a given maximal monotone graph in $\mathbb{R} \times \mathbb{R} ; f$ and h are given functions on $\mathbb{R} \times \Omega$ and on $\mathbb{R} \times \Gamma$, respectively; the function $u=u(t, x)$, with $\tilde{\beta}=\tilde{\beta}(t, x) \in \beta(u)$, is the unknown; ∂_{n} denotes the outward normal derivative on Γ.

Equation (1.1) represents mathematical models of some physical problems, and there are three interesting cases (a), (b) and (c) of β mentioned below:
(a) β is Lipschitz continuous on \mathbb{R} with linear growth at $\pm \infty$;
(b) β^{-1} is Lipschitz continuous on \mathbb{R};
(c) the domain $D(\beta)$ of β is bounded and not a singleton in \mathbb{R}; i.e., $\overline{D(\beta)}=\left[r_{*}, r^{*}\right]$ for some $-\infty<r_{*}<r^{*}<+\infty$.

For instance, in the case (a) equation (1.1) includes the enthalpy formulation of Stefan problem (cf. [4, 9, 13, 19]), and in the case (b) or (c) it has been considered as a mathematical modeling of filtration in porous media and of flow in Hele-Shaw cells (cf. [1-3, 5-8, 12, 16, 17]).

[^0]
[^0]: Received September 1989, in revised January 1991.
 AMS Subject Classifications: 35K65.

