ASYMPTOTIC STABILITY FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

Nobuyuki Kenmochi

Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan

(Submitted by: Peter Hess)

Abstract. In this paper we study a quasilinear degenerate parabolic equation with Neumann boundary condition of the form $u_t - \Delta\beta(u) \ni f(t,x)$ in $\mathbb{R} \times \Omega$, $\partial_n\beta(u) \ni h(t,x)$ on $\mathbb{R} \times \partial\Omega$, where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, β is a given maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ and f, g are given functions. We shall show the existence of a periodic solution in time and its stability as $t \to +\infty$.

1. Introduction. In this paper we study the following quasilinear parabolic equation:

$$u_t - \Delta \tilde{\beta} = f, \quad \tilde{\beta} \in \beta(u), \quad \text{in } \mathbb{R} \times \Omega,$$

$$(1.1)$$

$$\partial_n \beta = h \quad \text{on } \mathbb{R} \times \Gamma,$$
 (1.2)

where Ω is a bounded domain in \mathbb{R}^N $(N \ge 1)$ with sufficiently smooth boundary $\Gamma = \partial \Omega$; β is a given maximal monotone graph in $\mathbb{R} \times \mathbb{R}$; f and h are given functions on $\mathbb{R} \times \Omega$ and on $\mathbb{R} \times \Gamma$, respectively; the function u = u(t, x), with $\tilde{\beta} = \tilde{\beta}(t, x) \in \beta(u)$, is the unknown; ∂_n denotes the outward normal derivative on Γ .

Equation (1.1) represents mathematical models of some physical problems, and there are three interesting cases (a), (b) and (c) of β mentioned below:

- (a) β is Lipschitz continuous on \mathbb{R} with linear growth at $\pm \infty$;
- (b) β^{-1} is Lipschitz continuous on \mathbb{R} ;
- (c) the domain $D(\beta)$ of β is bounded and not a singleton in \mathbb{R} ; i.e., $\overline{D(\beta)} = [r_*, r^*]$ for some $-\infty < r_* < r^* < +\infty$.

For instance, in the case (a) equation (1.1) includes the enthalpy formulation of Stefan problem (cf. [4, 9, 13, 19]), and in the case (b) or (c) it has been considered as a mathematical modeling of filtration in porous media and of flow in Hele-Shaw cells (cf. [1-3, 5-8, 12, 16, 17]).

Received September 1989, in revised January 1991.

AMS Subject Classifications: 35K65.