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Abstract. We consider a natural Lagrangian system. We assume that the potential U( q) 
has a critical point q = 0, which is not a local maximum; furthermore this property depends 
only on a suitable k-jet of U (k 2: 3). Then, if the Lagrangian function is Ch, h 2: k + 3, and 
if a "weak coupling" condition is satisfied, we prove that q = 0 is an unstable equilibrium 
position. The last condition can be removed if the regularity of the Lagrangian function is 
strengthened by assuming h 2: k + m(k) + 3, where m(k) is the integral part of (k- 3)/2.The 
instability result is obtained by showing the existence of a motion tending to q = 0 as 

t-+ +=· 

0. Introduction. The classical Lagrange-Dirichlet theorem states that an equi
librium configuration, say q = 0, of a natural Lagrangian system, with a finite 
number N of degrees of freedom, is stable when the potential U( q) has at q = 0 
a strict local maximum. As is well known, the converse of this criterion does not 
hold in general. The problem of finding additional conditions, such that the lack 
of a strict local maximum of the potential at an equilibrium position implies its 
instability, received a large amount of attention. We refer to [1, 2, 3] for surveys 
of results concerning this problem. Here we just recall the result by V.V. Kozlov 
in [1], where the instability is proved by assuming that the Lagrangian function 
L = T + U E coo, and, for an integer k ~ 3, the k-jet of U is given by U121 + U[k], 
with u[2] a quadratic negative semidefinite form and u[k] a form of degree k which 
does not have a maximum at q = 0 in the set where U121 = 0. The instability 
is a consequence of the existence of an asymptotic motion q(t) to the equilibrium 
position; i.e., q(t) ---+ 0 as t ---+ +oo. Indeed, because of the energy integral, also 
q(t) ---+ 0 as t ---+ +oo, and the reversibility of the solutions of the Euler-Lagrange 
equations yields the instability. The asymptotic motion is obtained by Kozlov by 
constructing a formal series solution of the equations of motion. Then a result by 
Kuznetsov [4] on coo differential systems is used, in order to prove the existence of 
an actual solution having the previous formal series as asymptotic expansion. 
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