NONRESONANCE CONDITIONS FOR THE EXISTENCE, UNIQUENESS, AND STABILITY OF PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH A SYMMETRIC NONLINEARITIES

A.C. Lazer \dagger
Department of Mathematics, University of Miami, Coral Gables, FL. 33124
P.J. McKenna \dagger
Department of Mathematics, University of Connecticut, Storrs, CT 06268

(Submitted by: A.R. Aftabizadeh)

Abstract

We consider the differential equation $u^{\prime \prime}+k u^{\prime}+g(u)=p(t)+A \sin (m t+c)$, where $g^{\prime}(\xi) \rightarrow b$ as $\xi \rightarrow \infty, g^{\prime}(\xi) \rightarrow a$ as $\xi \rightarrow-\infty, k>0, p$ is continuous and 2π-periodic, and $m \geq 1$ is an integer. Conditions on a, b, k and m are given which ensure that for A sufficiently large and positive, there is a unique, asymptotically stable, 2π-periodic solution.

1. Introduction. The purpose of this paper is to extend the main result of [5]. In [5] we considered the differential equation

$$
u^{\prime \prime}(t)+k u^{\prime}(t)+b u^{+}(t)-a u^{-}(t)=p(t)+A \sin (m t+c)
$$

where A, a, b, and k are positive constants with $a<b, m \geq 1$ is an integer, c is constant, and p is continuous and 2π-periodic. Motivated by a numerical study carried out in [2], it was shown in [5] that if

$$
\frac{(2 m-1)^{2}}{4}<a \leq b<\frac{(2 m+1)^{2}}{4}
$$

and $k>0$ is arbitrary, then for A sufficiently large, there exists a unique 2π-periodic solution of the above differential equation and it is locally asymptotically stable in the sense of Liapunov.

Recently, in [6], we proved that if $g(t, \xi)$ is continuous and 2π-periodic in t and has a continuous partial derivative with respect to the second variable, $a \leq D_{2} g(t, \xi) \leq b$ for all $(t, \xi) \in \mathbb{R}^{2}$, where a and b are positive constants, $k>0$ is constant, and there

[^0]
[^0]: Received July 1990.
 \dagger Partially supported by NSF Grant DMS-8722593.
 \dagger Partially supported by NSF Grant DMS-8722532.
 AMS Subject Classifications: 34C25.

