NECESSARY CONDITIONS FOR THE CONVERGENCE AND SUMMABILITY OF EIGENFUNCTION EXPANSIONS IN THE COMPLEX DOMAIN

W. Eberhard
Universität-GH-Duisburg, FB 11-Mathematik, Lotharstr. 65, D-4100, Duisburg, FRG
G. Freiling
Lehrstuhl II für Mathematik, RWTH Aachen, Templergraben 55, D-5100 Aachen, FRG

(Submitted by: A.R. Aftabizadeh)

1. Introduction. We consider non-selfadjoint eigenvalue problems

$$
\begin{gather*}
l(y, \lambda)=\sum_{j=1}^{n}\left(\sum_{k=0}^{j} p_{k j}(z) y^{(k)}\right) \lambda^{n-j}+\lambda^{n} y=0 \tag{1.1}\\
U_{\nu}(y)=0, \quad 1 \leq \nu \leq n \tag{1.2}
\end{gather*}
$$

with two-point boundary conditions.
$\lambda_{0} \in \mathbb{C}$ is an eigenvalue of (1.1), (1.2) if there is a nontrivial function φ satisfying $l\left(\varphi, \lambda_{0}\right)=0$ and $U_{\nu}(\varphi)=0,1 \leq \nu \leq n ; \varphi$ is called eigenfunction corresponding to λ_{0}.

If (1.1), (1.2) has a countable set $\sigma=\left\{\lambda_{k}: k \in \mathcal{N}\right\}$ of eigenvalues and if for $\delta>0$ there are constants p and $c(\delta)>0$ such that Green's function G of (1.1), (1.2) is defined for $\lambda \notin \sigma$ and satisfies

$$
|G(x, \xi, \lambda)| \leq c(\delta)|\lambda|^{p} \quad \text { for } \quad \operatorname{dist}(\lambda, \sigma) \geq \delta
$$

then (1.1), (1.2) is called (almost-) regular (or Stone-regular); otherwise (1.1), (1.2) is called irregular.

For the investigation of regular or selfadjoint eigenvalue problems there exist various powerful methods and numerous results; especially it is possible in this case to expand every sufficiently smooth function satisfying adequate boundary conditions into a uniformly convergent series in e.a.f.'s (eigen- and associated functions) of (1.1), (1.2) (cf. [16], [12] and [8] for details and further references).

If (1.1), (1.2) is irregular then $G(x, \xi, \lambda)$ can grow exponentially for $|\lambda| \rightarrow \infty$. Irregular eigenvalue problems of the form (1.1), (1.2) and of more special type have been investigated by Ward [18], Eberhard [2], Hromov [10], [11] and Freiling [5], [6], [7]. These authors proved that only a very restricted class of functions can

[^0]
[^0]: Received July 1990.
 AMS Subject Classifications: 34B25.

