STEADY AND EVOLUTION STOKES EQUATIONS IN A POROUS MEDIA WITH NON-HOMOGENEOUS BOUNDARY DATA: A HOMOGENIZATION PROCESS

A.K. NANDAKUMAR

TIFR, P.B. No. 1234, Indian Institute of Science, Bangalore 560 012 India

(Submitted by: J.L. Bona)

Abstract. In this paper, we study the homogenization of the steady state and evolution Stokes equations with nonhomogeneous Dirichlet data on the boundary of the holes of a porous media Ω_{ε} , obtained from a domain Ω by removing a large number of holes of size ε ($\varepsilon > 0$, a small parameter), periodically distributed with period ε . In the homogenization process, we obtain a well defined system of equations involving both the 'slow' variable x and the 'fast' variable $y = \frac{x}{\varepsilon}$. We also derive the Darcy's law which contains an extra term and this additional term is the contribution due to the non-homogeneous data.

1. Introduction and the problem to be studied. We consider the steady state and evolution Stokes equation in a porous domain Ω_{ε} which is obtained from a domain Ω by removing a large number of holes of size ε (a small positive parameter) periodically distributed in the domain with period ε . We study the homogenization of the Stokes system with non-homogeneous Dirichlet condition on the boundary of the holes.

First we introduce the standard notations and then formulate the problems to be treated in this paper.

Notations. Let $Y = (0,1)^N$, $N \ge 2$, and T be an open set strictly contained in Y with smooth boundary S (the boundary S is a smooth manifold of dimension N-1) and $Y^* = Y \setminus \overline{T}$. Let $k \in \mathbb{Z}^N$, where \mathbb{Z} is the set of all integers, and let

$$Y_k = Y + k, \quad T_k = T + k, \quad Y_k^* = Y^* + k, \quad S_k = S + k = \partial T_k.$$

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary Γ . Let $\varepsilon > 0$ be a small positive parameter. Consider the index sets

$$I_{\varepsilon} = \left\{ k \in \mathbb{Z}^N : \varepsilon Y_k \subset \Omega \right\} \quad \text{and } J_{\varepsilon} = \left\{ k \in \mathbb{Z}^N : \varepsilon Y_k \cap \Gamma \neq \emptyset \right\}.$$

Loosely speaking, $\{\varepsilon T_k, k \in I_{\varepsilon}\}$ are interior holes and $\{\varepsilon T_k : k \in J_{\varepsilon}\}$ are boundary holes and then define the perforations in Ω as follows:

$$T_{\varepsilon} = \bigcup_{k \in I_{\varepsilon}} \varepsilon T_k, \quad S_{\varepsilon} = \partial T_{\varepsilon} = \bigcup_{k \in I_{\varepsilon}} \partial \left(\varepsilon T_k \right).$$

Received October 1990.

AMS Subject Classifications: 35B27, 35B40, 73B27, 76D30.