AN EXISTENCE THEOREM FOR A PARABOLIC FREE BOUNDARY PROBLEM

Russell C. Thompson
Department of Mathematics, Utah State University, Logan, Utah 84322

Wolfgang L. Walter
Mathematisches Institut I, Universität Karlsruhe, D-7500 Karlsruhe 1, Germany

(Submitted by: Klaus Schmitt)

Abstract

In this paper, the existence of a (classical) solution to a diffusion process with free boundary is obtained by applying Rothe's method (method of lines). A collection of semidiscrete approximate problems is obtained by discretizing the partial differential equations with respect to the time variable. A sequence of approximate solutions to the diffusion process is constructed from this collection of semi-discrete problems by interpolation between the lines in the grid. This sequence is then shown to converge to a solution to the free boundary problem.

1. Introduction. In an earlier article [6], we investigated the convergence of the method of lines approximations to the following implicit nonlinear parabolic free boundary problem:

$$
\left\{\begin{array}{l}
u_{x x}=u_{t}+f\left(t, x, u, u_{x}\right), \quad 0<t \leq T, \quad 0<x<s(t) \tag{P}\\
(B u)(t)=\alpha(t), \quad u(t, s(t))=u_{x}(t, s(t))=0, \quad 0<t \leq T \\
u(0,0)=0, \quad s(0)=0
\end{array}\right.
$$

where $(B u)(t):=a u(t, 0)-b u_{x}(t, 0)$, with $a, b \geq 0, a+b=1$, and $\alpha(t)>0$ for $0<t \leq T$. In this paper, we extend these earlier results to give a constructive existence proof for problem (P). Our approach to this problem is to apply the transversal line method (also known as Rothe's method [3], [4]) and is motivated, in part, by some results of G.H. Meyer ([1], [2]) on a similar problem.

In the transversal line method, a finite difference is substituted in the place of the time derivative u_{t} in (P). Using the notation $h:=T / N$, where N is a whole number, $N \geq 1, t_{n}:=n h, u_{n}(x) \approx u\left(t_{n}, x\right)$ and $\delta u_{n}(x):=h^{-1}\left(u_{n}-u_{n-1}\right), n=1, \ldots, N$, we may associate with the above problem a discretized problem

$$
\left\{\begin{array}{l}
u_{n}^{\prime \prime}=\delta u_{n}+f\left(t_{n}, x, u_{n}, u_{n}^{\prime}\right), \quad 0 \leq x \leq s_{n} \tag{N}\\
B u_{n}=\alpha_{n}, \quad u_{n}\left(s_{n}\right)=u_{n}^{\prime}\left(s_{n}\right)=0 \\
u_{0}(x) \equiv 0, \quad s_{0}=0
\end{array}\right.
$$

