Differential and Integral Equations, Volume 5, Number 2, March 1992, pp. 461-480.

P-SYMMETRIES OF TWO-DIMENSIONAL P-F VECTOR FIELDS

BRIAN COOMES

Department of Mathematics, University of Miami, Coral Gables, Florida 33124

(Submitted by: V. Lakshmikantham)

Abstract. We calculate the group of p-symmetries for each Bass-Meisters normal form of two-dimensional p-f vector fields. We also examine the behavior of the group of p-symmetries under coordinate change. We deduce that we have found the group of p-symmetries of each two-dimensional p-f vector field up to conjugation by a polyomorphism.

1. Introduction. Consider the initial value problem

$$\dot{y} \ (\equiv \frac{dy}{dt}) = \mathbf{V}(y), \qquad y(0) = x \in \mathbb{F}^n,$$
(1.1)

where \mathbf{V} is a continuously differentiable vector field on \mathbb{F}^n (\mathbb{F} is \mathbb{R} or \mathbb{C}). Let $\phi: \Omega \to \mathbb{F}^n$ be the (local) flow associated with (1.1) where Ω , an open subset of $\mathbb{R} \times \mathbb{F}^n$, is the maximal domain of ϕ . For each t in \mathbb{R} let U^t be the set of all x in \mathbb{F}^n such that (t, x) is in Ω . The flow ϕ is said to be a *polynomial flow* and \mathbf{V} is said to be a *p-f vector field* if for each t in \mathbb{R} the t-advance map $\phi^t: U^t \to \mathbb{F}^n$ is polynomial. That is, if for each t in \mathbb{R} , each component of ϕ^t is polynomial.

Call a polynomial map $P \colon \mathbb{F}^n \to \mathbb{F}^n$ a polynomial inverse. Call a diffeomorphism $F \colon \mathbb{F}^n \to \mathbb{F}^n$ a symmetry of the vector field \mathbf{V} if $F'(x)\mathbf{V}(x) = \mathbf{V}(F(x))$ for all x in \mathbb{F}^n . (We identify F'(x) with the matrix whose ijth entry is $\partial F_i/\partial x_j$.) Equivalently, a diffeomorphism $F \colon \mathbb{F}^n \to \mathbb{F}^n$ is a symmetry of \mathbf{V} if F sends solutions of (1.1) to solutions. If $P \colon \mathbb{F}^n \to \mathbb{F}^n$ is both a polynomrphism and a symmetry, call P a p-symmetry of \mathbf{V} . The main result in this paper is a "complete" description of the set of p-symmetries of each two-dimensional p-f vector field. Our description is based on Theorem 11.8 of Bass and Meisters [3] which gives a set of normal forms, the Bass-Meisters normal forms, for two-dimensional p-f vector fields under polynomrphic coordinate changes. (See also Zurkowski [16].) Their Theorem 11.8 is restated here, along with a list of their normal forms, as our Theorem 4.1. In this paper we describe how the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of p-symmetries behaves under a coordinate change and then we calculate the set of

Received August 1990.

This paper is derived from the author's Ph.D. thesis at the University of Nebraska-Lincoln, 1988. The author expresses his gratitude to his thesis advisor, Professor Gary H. Meisters, for his support and aid.

AMS Subject Classifications: 34A05, 54H15.