ON PAIRS OF POSITIVE SOLUTIONS FOR A CLASS OF SUB-SUPERLINEAR ELLIPTIC PROBLEMS

F.J.S.A. Corrêa \dagger
Departamento de Matemática e Estatística Centro de Ciências e Tecnologia Universidade Federal da Paraíba, 58.100-Campina Grande - PB - Brazil

(Submitted by: Peter Hess)

Abstract

We consider a class of semilinear elliptic problems where the nonlinearity f is essentially asymptotically linear. Using bifurcation theory, we prove that the problem $-\Delta u=f(x, u)$ in $\Omega, u=0$ on $\partial \Omega$, possesses at least two positive solutions if f is "subsuperlinear" among other assumptions.

1. Introduction. In this work, we consider the question of existence and multiplicity of positive solutions for the problem

$$
\begin{equation*}
-\Delta u=f(x, u) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded smooth domain and $f: \bar{\Omega} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a locally Lipschitz continuous function which is sublinear at zero and superlinear at infinity. Throughout this paper, the following basic assumptions on f will be assumed:
$\left(f_{1}\right) f(x, t)>0$ for all $(x, t) \in \bar{\Omega} \times(0,+\infty)$;
($\left.f_{2}\right) f(x, 0)>0$ or if $f(x, 0)=0$ then $0<a_{0}(x):=\lim _{t \rightarrow 0+} \frac{f(x, t)}{t}$, uniformly in $\bar{\Omega}$, and $a_{0} \in C^{\alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$;
$\left(f_{3}\right)$ there exists a function $a_{\infty} \in C^{\alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$, such that $\lim _{t \rightarrow \infty} \frac{f(x, t)}{t}=a_{\infty}(x)>0$, uniformly in $\bar{\Omega}$.
Let us denote by $\lambda_{i}(m), i=1,2, \ldots$, the eigenvalues of the linear eigenvalue problem

$$
-\Delta u=\lambda m u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

where $m \in C^{\alpha}(\bar{\Omega})$ and $m(x)>0$ in Ω. It is well known that $0<\lambda_{1}(m)<\lambda_{2}(m) \leq$ $\lambda_{3}(m) \leq \ldots, \lambda_{i}(m) \rightarrow+\infty, \lambda_{1}(m)$ is simple and its associated eigenfunction φ_{1} may be taken positive in Ω and it is the unique eigenfunction with this property.

Hereafter we assume the following:

$$
\begin{equation*}
\lambda_{1}\left(a_{0}\right)<1 \quad \text { and } \quad \lambda_{1}\left(a_{\infty}\right)<1 \tag{s}
\end{equation*}
$$

Received November 1990, in revised form March 1991.
\dagger Partially supported by CNPq/Brasil.
AMS Subject Classification: 35J25, 47H15.

