ALMOST-PERIODIC ATTRACTORS FOR A CLASS OF NONAUTONOMOUS REACTION-DIFFUSION EQUATIONS ON \mathbb{R}^N II. CODIMENSION-ONE STABLE MANIFOLDS

PIERRE-A. VUILLERMOT[†]

Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-5300 Bonn 3, Germany

(Submitted by: Peter Hess)

Abstract. In this paper, we initiate an investigation of the stability properties of a oneparameter family $\{\hat{u}\}$ of spatially homogeneous, time almost-periodic classical solutions to a class of nonautonomous semilinear parabolic initial value problems with Neumann boundary conditions on bounded regions Ω of \mathbb{R}^N . In particular, for $p \in (N, \infty)$ and for every $\hat{u} \in \{\hat{u}\}$, we construct in the Sobolev space $H^{2,p}(\Omega, \mathbb{R})$ a codimension-one local stable manifold of classical solutions of small amplitude, which thereby all stabilize exponentially rapidly around \hat{u} . Our method of investigation exploits the Banach algebra structure of $H^{2,p}(\Omega, \mathbb{R})$ and mainly rests upon the construction of fixed point solutions to certain nonlinear integral equations in weighted Banach spaces of exponentially decaying $H^{2,p}(\Omega, \mathbb{R})$ -valued maps. The class of equations which we analyze here contains, in particular, Fisher's type reaction-diffusion equations of population genetics. The results of this paper are thereby complementary to those of [14] and [15].

1. Introduction and outline. This is the second of a series of articles devoted to the analysis of stabilization phenomena for certain classical solutions to real semilinear parabolic Neumann boundary value problems of the form

$$\begin{cases} u_t(x,t) = \Delta u(x,t) + s(t)g(u(x,t)), & (x,t) \in \Omega \times \mathbb{R}^+, \\ \operatorname{Ran}(u) \subseteq (u_0, u_1), \\ \frac{\partial u}{\partial n}(x,t) = 0, & (x,t) \in \partial\Omega \times \mathbb{R}^+ \end{cases}$$
(1.1)

([14]–[16]). In equations (1.1), Ω denotes an open bounded connected subset of \mathbb{R}^N with smooth boundary $\partial\Omega$ and $N \in [2, \infty) \cap \mathbb{N}^+$, while Δ stands for Laplace's operator in the *x*-variables. Furthermore, $s \colon \mathbb{R}^+ \to \mathbb{R}$ is the restriction to \mathbb{R}^+ of a Bohr almost-periodic function on \mathbb{R} which we shall also denote by *s*, while $g \in C^{(1)}(\mathbb{R}, \mathbb{R})$ possesses at least two zeroes u_0 and u_1 such that g(u) > 0 for every $u \in (u_0, u_1)$ with the property that $g'(u_0) > 0$ and $g'(u_1) < 0$. Finally, Ran (u) denotes the range of *u* and *n* stands for the normalized outer normal vector to $\partial\Omega$.

An International Journal for Theory & Applications

Received November 1990, in revised form August 1991.

[†]Max-Planck-Fellow in Mathematics. On leave from the Mathematics Department of the University of Texas, Arlington, Texas, 76019, U.S.A.

AMS Subject Classification: 35K, 58B, 58F.