DEGENERATE SEMILINEAR PARABOLIC EQUATIONS

Andreas Stahel
Mathematics Department, Brigham Young University, Provo, UT 84602

(Submitted by: Klaus Schmitt)

Abstract

A proof for global existence and uniqueness of solutions to degenerate parabolic equations is presented. The proof is based on an approximation by uniformly parabolic equations and an Ascoli-Arzela lemma for weak convergence. We use semigroup methods and weighted Sobolev spaces.

1. Introduction. Using elementary tools, we will prove existence and uniqueness of a global solution to the problem

$$
\begin{align*}
\dot{u}(x, t)-\nabla \cdot(a(x) \nabla u(x, t))-b(x) \cdot \nabla u(x, t) & =f(u(x, t)) & & \text { in } \Omega \times I \\
u(x, t) & =0 & & \text { on } \Gamma_{0} \times I \\
\frac{d u(x, t)}{d \nu_{a}}+\beta(x) u(x, t) & =0 & & \text { on } \Gamma_{1} \times I \tag{1}\\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega
\end{align*}
$$

on a smooth bounded subset Ω of \mathbb{R}^{N} and $I=\left[0, T^{+}\right]$where T^{+}is an arbitrary positive number. The coefficient matrix $a(x)$ is assumed to be a positive definite symmetric $N \times N$ matrix, but its smallest eigenvalue might converge to zero as x approaches a singular set S in $\bar{\Omega}$. This makes the above a degenerate parabolic problem which can not be solved by the standard methods.

Linear degenerate problems of parabolic and elliptic type were considered in [3], [11], [10], [12] and [14]. Some nonlinear evolution equations are solved in [13]. In a recent series of papers, Goldstein and Lin [4], [5], [6], [7] solved similar but quasilinear problems. Their approach is based on the Crandall-Liggett theorem. A very general result for the one dimensional quasilinear case is presented in [2]. The method of weighted Sobolev spaces was applied to degenerate elliptic problems in [8], [9] and [11].

The method used in this paper is based on an approximation by uniformly parabolic problems (see [15]). We seek solutions in the natural energy space which turns out to be a weighted Sobolev space $H_{a}^{1}(\Omega)$. In the present paper, we consider a general class of degeneracies. The coefficient matrix a does not have to decay like a power of the distance to the boundary, instead we have the assumption (3). This allows also for degeneracies in the interior of the domain Ω. The papers [4], [5],

