Differential and Integral Equations, Volume 5, Number 3, May 1992, pp. 567-579.

IDENTIFICATION OF NONLINEAR TERMS IN BOUNDARY VALUE PROBLEMS RELATED TO ORDINARY DIFFERENTIAL EQUATIONS

A. Denisov

Department of Computational Mathematics and Cybernetics, Moscow State University Leninskiye gory, Moscow, USSR

A. LORENZI

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano via Saldini 50, 20133 Milano, Italy

(Submitted by: G. Da Prato)

Abstract. We prove existence, uniqueness and stability results concerning the identification of two nonlinear terms in an overspecified boundary value problem related to a (nonlinear) second-order differential equation containing a spectral parameter λ .

0. Introduction. Inverse problems for ordinary differential equations turn out to be a wide and important class of inverse problems. Yet, as is well-known, a very large number of results is devoted to the determination of unknown coefficients in linear second-order differential equations containing a spectral parameter λ (see e.g., [1], [3]).

On the contrary, the case of nonlinear second-order differential equations is much less studied. Our paper wants to contribute in this field. It is strictly related to papers [2] and [4] of the present authors. There they were concerned with the problem of determining (i.e., of establishing existence and uniqueness results for) an unknown term appearing in an equation containing a parameter λ by the means of additional information depending on such a parameter.

In the present paper we consider the problem of determining two unknown nonlinear terms appearing in a second-order differential equation depending on a parameter λ by the means of additional information depending on λ .

Explicitly our problem is the following: determine a triplet of functions m(t), f(t), $y(x, \lambda)$ satisfying the differential equation

 $\left[m(y(x,\lambda))y'(x,\lambda)\right]' = \lambda^2 f(y(x,\lambda)), \qquad (x,\lambda) \in [0,1] \times [0,\Lambda] \tag{0.1}$

and the boundary conditions

$$y(0,\lambda) = 0, \qquad y'(0,\lambda) = \lambda g(\lambda), \quad \lambda \in [0,\Lambda]$$
 (0.2)

$$y(1,\lambda) = a(\lambda), \quad y'(1,\lambda) = \lambda d(\lambda), \quad \lambda \in [0,\Lambda].$$
 (0.3)

An International Journal for Theory & Applications

Received for publication December 1990.

AMS Subject Classifications: 34A55, 34B15.