A NOTE ON A SEMILINEAR ELLIPTIC PROBLEM

Gabriella Tarantello \dagger
Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213

(Submitted by: J.A. Goldstein)

Introduction. Let Ω be a bounded set in \mathbb{R}^{n} with smooth boundary $\partial \Omega$. In this note, we are concerned with the Dirichlet problem

$$
\begin{cases}\Delta^{2} u+c \Delta u+b\left[(u+1)_{+}-1\right] & \text { on } \Omega \tag{I}\\ u=0, \Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where $u_{+}=\max \{u, 0\}, b, c \in \mathbb{R}$ and Δ^{2} denotes the biharmonic operator.
Equations with nonlinearities of this type have been extensively studied in the contex of second order elliptic operators. We refer the reader to a recent paper by Lazer and McKenna [2] for a rather complete account of the results obtained in this direction. Also see the bibliography in [2].

Moreover, in [2] it has been pointed out how these type of nonlinearities also furnish a good model for the study of suspension bridges. Naturally, this leads to the consideration of fourth order elliptic operators ; problem (I), in particular, becomes relevant when studying travelling wave solutions (cf. [3], [2, p. 558]).

We notice that problem (I) always admits the trivial solution $u=0$. Thus, a natural question to ask is whether other solutions exist. In this direction, we have the following theorem.

Theorem 1. Let $\lambda_{1}>0$ be the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$ and let $c<\lambda_{1}$. We have that

$$
\text { problem (I) admits a nontrivial solution } \Longleftrightarrow b \geq \lambda_{1}\left(\lambda_{1}-c\right) .
$$

Remark 1. Concerning the existence part of Theorem 1, notice that if $b=\lambda_{k}\left(\lambda_{k}-\right.$ $c)$ and λ_{k} is an eigenvalue for $-\Delta$ with corresponding eigenfunction Φ_{k}, then $u=$ $s \Phi_{k}$ defines a C^{∞} solution for (I) for every $s \in \mathbb{R}$ sufficiently small to guarantee that $s \Phi_{k}(x)>-1$ for all $x \in \Omega$. So, one obtains infinitely many solutions in this case. We shall prove that other solutions exist. More precisely, we have the following theorem.

Theorem 2. Assume that $b \geq \lambda_{1}\left(\lambda_{1}-c\right)>0$. Then there exists a solution $u=u(x)$ of (I) satisfying

$$
\begin{equation*}
u(x)<0 \quad \text { on } \Omega \text {. } \tag{0.1}
\end{equation*}
$$

Received March 1991.
\dagger This research has been supported in part by NSF grant DMS-9003149.
AMS Subject Classifications: 35J65, 35J40.

