Differential and Integral Equations, Volume 5, Number 3, May 1992, pp. 561-565.

A NOTE ON A SEMILINEAR ELLIPTIC PROBLEM

GABRIELLA TARANTELLO[†]

Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213

(Submitted by: J.A. Goldstein)

Introduction. Let Ω be a bounded set in \mathbb{R}^n with smooth boundary $\partial \Omega$. In this note, we are concerned with the Dirichlet problem

$$\begin{cases} \Delta^2 u + c\Delta u + b[(u+1)_+ - 1] & \text{on } \Omega, \\ u = 0, \ \Delta u = 0 & \text{on } \partial\Omega, \end{cases}$$
(I)

where $u_{+} = \max\{u, 0\}, b, c \in \mathbb{R}$ and Δ^2 denotes the biharmonic operator.

Equations with nonlinearities of this type have been extensively studied in the contex of *second* order elliptic operators. We refer the reader to a recent paper by Lazer and McKenna [2] for a rather complete account of the results obtained in this direction. Also see the bibliography in [2].

Moreover, in [2] it has been pointed out how these type of nonlinearities also furnish a good model for the study of suspension bridges. Naturally, this leads to the consideration of fourth order elliptic operators; problem (I), in particular, becomes relevant when studying travelling wave solutions (cf. [3], [2, p. 558]).

We notice that problem (I) always admits the *trivial* solution u = 0. Thus, a natural question to ask is whether other solutions exist. In this direction, we have the following theorem.

Theorem 1. Let $\lambda_1 > 0$ be the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$ and let $c < \lambda_1$. We have that

problem (I) admits a nontrivial solution $\iff b \ge \lambda_1(\lambda_1 - c)$.

Remark 1. Concerning the existence part of Theorem 1, notice that if $b = \lambda_k (\lambda_k - c)$ and λ_k is an eigenvalue for $-\Delta$ with corresponding eigenfunction Φ_k , then $u = s\Phi_k$ defines a C^{∞} solution for (I) for every $s \in \mathbb{R}$ sufficiently small to guarantee that $s\Phi_k(x) > -1$ for all $x \in \Omega$. So, one obtains infinitely many solutions in this case. We shall prove that other solutions exist. More precisely, we have the following theorem.

Theorem 2. Assume that $b \ge \lambda_1(\lambda_1 - c) > 0$. Then there exists a solution u = u(x) of (I) satisfying

$$u(x) < 0 \qquad \text{on } \Omega. \tag{0.1}$$

An International Journal for Theory & Applications

Received March 1991.

[†]This research has been supported in part by NSF grant DMS-9003149.

AMS Subject Classifications: 35J65, 35J40.