Differential and Integral Equations, Volume 5, Number 4, July 1992, pp. 855-870.

STEADY-STATE SOLUTIONS OF MAXWELL'S EQUATIONS OVER A THREE-DIMENSIONAL CONDUCTING HALF SPACE

J.R. SCHULENBERGER[†]

ANAH Corporation, Tucson, AZ

D.S. GILLIAM‡

Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.

(Submitted by: J.A. Goldstein)

Abstract. A rigorous derivation is given of steady-state solutions v(x) to the problem of the electromagnetic field over a three-dimensional conducting half space \mathbb{R}^3_{\pm} due to a time-harmonic source located in \mathbb{R}^3_{\pm} ($\mathbb{R}^3_{\pm} = \{x \in \mathbb{R}^3 : \pm x_3 > 0\}$). For $x \in \mathbb{R}^3_{\pm}$, a general solution v(x) has the structure

$$v = v_0 + v_{s_0} + v_{s_+} + v_{s_-} + \breve{v}_p + v_p,$$

where v_0 is the static component, v_{s_0} is the AH-wave component, $v_{s_{\pm}}$ are the surface-wave components, and \mathring{v}_p and v_p are the spatial-wave components obtained as superpositions of modes having the frequencies of the upper and lower media respectively. For large |x|, they decay as follows: v_0 , $v_{s_{\pm}}$, $v_p = O(|x|^{-2})$, $v_{s_0} = o(|x|^{-1})$, $\mathring{v}_p = O(|x|^{-1})$. An explicit expression is given for the leading term of the asymptotics of \mathring{v}_p . In particular, contrary to popular belief, there is no component which decays like $O(|x|^{-1/2})$ along the interface $\{x_3 = 0\}$.

1. Introduction. For Maxwell's equations over a conducting half space, the solution u(x,t) for quite general sources f(x,t) can be represented by Duhamel's principle [3, p. 197]. Time-harmonic solutions arise as approximations to such solutions for large t when the source is time-harmonic. For such approximations, it is often possible to obtain much more information than for the actual solution. For this reason, it is important to give a rigorous derivation of such solutions and determine their properties.

To formulate the problem let I_3 be the 3×3 identity matrix, let \underline{O} be the 3×3 zero matrix, and let B and E be the diagonal matrices

$$B = \operatorname{diag} (-i\sigma I_3, \underline{O}),$$

$$E(x) = \operatorname{diag} [\varepsilon(x)I_3, \mu(x)I_3] = \chi_+(x_3)\operatorname{diag} [\varepsilon_0 I_3, \mu_0 I_3] + \chi_-(x_3)\operatorname{diag} [\varepsilon I_3, \mu I_3]$$

$$\equiv E_+ + E_-.$$

Received for publication May 1991.

†Supported by ANAH Corporation.

[‡]Supported in part by NSF Grant #DMS 9008144 and AFOSR Grant #88-0309. AMS Subject Classification: 35Q60, 78A40.

An International Journal for Theory & Applications