Differential and Integral Equations, Volume 5, Number 4, July 1992, pp. 817-820.

A NOTE ON A CONTINUATION PRINCIPLE FOR COMPACT PERTURBATIONS OF THE IDENTITY

Massimo Lanza de Cristoforis

Dipartimento di Matematica Pura ed Applicata Università di Padova, via Belzoni 7, 35131 Padova, Italy

(Submitted by: Jean Mawhin)

Abstract. The equation $F(x, \lambda) = x - k(x, \lambda)$, $(x, \lambda) \in \mathcal{O} \subseteq \mathcal{X} \times \mathbb{R}^n$, F(0, 0) = 0, where \mathcal{X} is a real Banach space, is considered. The nonlinear operator k is assumed to be continuous on \mathcal{O} and compact on the open sets $\mathcal{O}(\epsilon)$, where $\mathcal{O} = \bigcup_{0 < \epsilon < E} \mathcal{O}(\epsilon)$. F is differentiable at (0,0) and ker DF(0,0) has dimension n. It is shown by means of the Leray-Schauder degree that the connected component of the set of zeros of F containing (0,0) is either unbounded, approaches $\partial \mathcal{O}$ in a well-defined sense or intersects all the subspaces \mathcal{Y} of condimension n in $\mathcal{X} \times \mathbb{R}^n$ such that ker $DF(0,0) \cap \mathcal{Y} = \{(0,0)\}$ at a point distinct from (0,0). The result is known if the Leray-Schauder topological degree of the map $F(\cdot, 0)$ relative to some open and bounded subset of $\mathcal{O} \cap (\mathcal{X} \times \{0\})$ containing (0,0) is defined and different from $0, \mathcal{Y} = \mathcal{X} \times \{0\}$, and k is compact on \mathcal{O} . References for applications are given.

1. Introduction. The purpose of the present note is to prove a consequence of a continuation principle given in J. Ize, I. Massabò, J. Pejsachowicz, and A. Vignoli [2, Theorem 4.1]. Our proof is self-containing. We consider the (celebrated) equation

$$F(x,\lambda) = 0, \quad F(x,\lambda) \equiv x - k(x,\lambda), \quad k(0,0) = 0, \quad (x,\lambda) \in \mathcal{O} \subseteq \mathcal{X} \times \mathbb{R}^n, \quad (1.1)$$

where k is continuous from the open subset \mathcal{O} containing (0,0) to the real Banach space \mathcal{X} . We assume that \mathcal{O} is the union of an ascending family of open sets $\mathcal{O}(\epsilon)$ (cf. (2.5)) and that k is compact on each $\mathcal{O}(\epsilon)$, although k is not assumed to be compact on \mathcal{O} . This situation seems to occur a number of times in the study of fluid-solid interaction problems (cf. [3–5], [6]), where this paper finds application. We now briefly summarize our statement. Let \mathcal{S}_0 be the connected component of the set of zeros of F in \mathcal{O} containing (0,0). Let F be differentiable at (0,0) and let ker DF(0,0) denote the null space of DF(0,0), which we assume to be of dimension n. Then either \mathcal{S}_0 is unbounded, approaches $\partial \mathcal{O}$ in the sense that \mathcal{S}_0 cannot be contained in any of the $\mathcal{O}(\epsilon)$ or $\mathcal{S}_0 \setminus \{(0,0)\}$ intersects every subspace \mathcal{Y} of $\mathcal{X} \times \mathbb{R}^n$ of codimension n with ker $DF(0,0) \cap \mathcal{Y} = \{(0,0)\}$. This conclusion is known to hold if k is compact on $\mathcal{O}, \mathcal{Y} = \mathcal{X} \times \{0\}$ and if the Leray-Schauder topological degree of the map $F(\cdot, 0)$ relative to some open and bounded subset of $\mathcal{O} \cap (\mathcal{X} \times \{0\})$ containing (0,0) is defined and different from 0 (cf. J. Ize, I. Massabò, J. Pejsachowicz and A. Vignoli [2, Theorem 4.1]).

An International Journal for Theory & Applications

Received for publication June 1991.

AMS Subject Classification: 47H10, 58C30, 47H15.