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1. Introduction. Our main objective in this paper is to give some a priori 
estimates and to prove existence and non-existence theorems for particular elliptic 
systems, which were already briefly studied in [14], and the biharmonic equation. 
We shall restrict ourselves here to radially symmetric solutions so that we can apply 
ODE-methods. It should be noted that, by a result of W.C. Troy [13], solutions 
of Problem (I) are automatically radially symmetric if f and g are non-decreasing 
functions of the dependent variables u and v. However, our results will not be 
restricted to such functions f and g. We consider the problem 
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where (u,v) E C 2 (BR) x C 2 (BR), with BRa ball in !RN (N ~ 4) of radius R. For 
functions f and g, the following properties are assumed to hold: 

(H1) { 
j, g E C(IR), 

f(O) = 0, g(O) = 0. 

The system described by (I) appears in all kinds of problems in physics and 
chemistry because in many systems of reaction-diffusion equations, the steady-states 
are solutions of Problem (I). Actually, we can generalize Problem (I) to more general 
functions f and g; for instance, if f ( u, v) and g( u, v) are both positive functions 
in u and v with certain growth-conditions. In this paper, we shall concentrate on 
Problem (I) in order to develop a method for proving the existence of solutions. 

The idea of studying Problem (I) came from the study of the biharmonic equation 
with the boundary conditions u = 0 and ~u = 0. This problem is easily put in the 
form of Problem (I) when we set g( v) = v. This initial study brought up the idea 
of families of critical exponents of Problem (I), which is described in [14] in great 
detail. We also refer to [15] for related results on biharmonic problems. Thus in 
this paper we shall introduce the critical exponents p* and q* defined by 

* N- ~ 
p =-~-, 

* 2 +~ 
q = N-2-~' 
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