SOME REMARKS ON STEIN'S L log L RESULT*

Alberto Fiorenza

Dipartimento di Matematica ed Applicazioni "Renato Caccioppoli" Complesso Universitario Monte S. Angelo Via Cintia, I-80126 Napoli, Italy

(Submitted by: H. Brezis)

Abstract. Stein has shown that $Mf \in L \iff f \in L \log L$ where Mf is the Hardy-Littlewood maximal function. In this paper we are giving a "dual" result of the type

$$Mf \in \frac{L}{\log L} \iff f \in L,$$

and some generalizations of the related inequalities.

1. Introduction. Let Q_0 be a fixed cube in \mathbb{R}^N with sides parallel to the axes and for $f \in L^1(Q_0)$ let us define the local maximal function

$$Mf(x) = \sup_{\substack{x \in Q \\ Q \subset Q_0}} \frac{1}{|Q|} \int_Q |f(y)| \, dy, \quad \forall x \in Q_0,$$

where the supremum extends over all cubes $Q \subset Q_0$ containing x with sides parallel to the coordinate axes. A well known theorem of Hardy-Littlewood asserts that if $f \in L \log L(Q_0)$, then $Mf \in L^1(Q_0)$. In [14] Stein shows that the converse of this theorem is also true; namely, it can be proved that (see, e.g., [8])

$$\int_{Q_0} |f(x)| \log \left(e + \frac{|f(x)|}{\frac{1}{|Q_0|} \int_{Q_0} |f|} \right) dx \le 2^N \int_{Q_0} Mf(x) dx. \tag{1}$$

In this paper (see section 3) we give the following "dual" inequality:

$$\int_{Q_0} |f(x)| \, dx \le 2^{N+1} \int_{Q_0} \frac{Mf(x)}{\log\left(e + \frac{Mf(x)}{\frac{1}{|Q_0|} \int_{Q_0} Mf}\right)} \, dx, \quad \forall f \in L^1(Q_0), \ f \not\equiv 0. \tag{2}$$

Moreover, we give a generalization of the Hardy-Littlewood theorem (see §4) which covers many well-known classical results (e.g., $||Mf||_{L(\log L)^{\alpha}} \le c||f||_{L(\log L)^{\alpha+1}}$ with $\alpha > 0$, $||Mf||_{L_p} \le c||f||_{L_p}$ with p > 1, $||Mf||_{L_p(\log L)^{\alpha}} \le c||f||_{L^p(\log L)^{\alpha}}$ with p > 1

Received August 1991

^{*}This work has been performed as part of a National Research Project supported by M.P.I. (40%)

AMS Subject Classifications: 42B25.