EXISTENCE RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS WITH NONREGULAR DATA

Andrea Dall'Aglio
Dipartimento di Matematica "Ulisse Dini," Università degli Studi di Firenze V.le Morgagni 67/a, 50134, Firenze, Italy
Luigi Orsina
Dipartimento di Matematica "Guido Castelnuovo"
Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy

(Submitted by: G. Da Prato)

Abstract

We prove existence and regularity theorems for some nonlinear parabolic equations of the form $$
u_{t}+A(u)=f
$$

in a bounded cylinder Q, where A is an operator of the Leray-Lions type. Here the datum f is a bounded Radon measure or an L^{m} function (with m "small") so that the "standard" variational setting does not apply.

1. Introduction and statement of results. In this paper, we will consider the following parabolic equation:

$$
\left\{\begin{array}{l}
u_{t}-\operatorname{div} a(x, t, u, \nabla u)=f \text { in } Q \tag{P}\\
u(x, 0)=u_{0}(x) \text { for a.e. } x \in \Omega \\
u(x, t)=0 \text { for }(x, t) \in \Gamma
\end{array}\right.
$$

Here Ω is a bounded open set in $\mathbb{R}^{N}, N \geq 2, Q$ is the cylinder $\Omega \times(0, T)$, where T is a real positive number, and Γ is the "lateral surface" $\partial \Omega \times(0, T)$.

The operator $A(u)=-\operatorname{div} a(x, t, u, \nabla u)$ is an operator of the Leray-Lions type (see [9]). We will study the existence of a solution for (P) under various hypotheses on the data f and u_{0}. The difficulty lies in the fact that we will not choose these data in a "classical" dual space (for instance, f will be a bounded measure), so that it will not be possible to use the variational framework (see [8]).

To solve this problem, the following two steps, which are, in a way, "classical," are needed:

- a priori L^{q}-regularity results for the gradients of solutions of (P);
- approximation of f with regular functions and study of the convergence of the solutions of the corresponding problems, using the estimates to prove that the limit is a solution of (P).

