REGULARITY PROPERTIES OF THE EVOLUTION OPERATOR FOR ABSTRACT LINEAR PARABOLIC EQUATIONS

Paolo Acquistapace
Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Università di Roma "La Sapienza", 00161 Roma, Italy
Brunello Terreni
Dipartimento di Matematica "F. Enriques", Università di Milano, 20133 Milano, Italy

(Submitted by: G. Da Prato)
0. Introduction. Consider the parabolic Cauchy problem

$$
\begin{equation*}
u^{\prime}(t)-A(t) u(t)=f(t), \quad t \in[s, T], \quad u(s)=x \tag{0.1}
\end{equation*}
$$

in a general Banach space E, where the operators $A(t)$ generate analytic semigroups in E, with possibly non-dense domains. The existence of the evolution operator $U(t, s)$ for problem (0.1) is guaranteed provided the family $\{A(t)\}_{t \in[0, T]}$ enjoys some regularity with respect to t. It is shown in $[5, \S 7]$ that all kinds of hypotheses used in the literature can be essentially reduced to two independent sets of assumptions which are weaker than any other: namely, the classical ones by Kato and Tanabe [10], revisited in [3, 4], and those introduced in [5] and used in [6, 1].

The properties of $U(t, s)$ and its regularity with respect to t are very well known now. Much less information is available on the regularity of $s \rightarrow U(t, s)$; the only classical result is that

$$
\begin{equation*}
\exists\left[\frac{d}{d \sigma} U(t, \sigma) x\right]_{\sigma=s}=-U(t, s) A(s) x, \quad \forall x \in D_{A(s)}, \quad \forall 0 \leq s \leq t \leq T \tag{0.2}
\end{equation*}
$$

provided all domains $D_{A(t)}$ are dense in E (see e.g., [17, Theorems 5.2.1 and 5.3.3]); some improvements of (0.2) can be found in [9, Theorem I], [16, §1.11]. In addition, under the assumptions of [10], it is known that the operator-valued function $s \rightarrow$ $U(t, s)$ is differentiable in $\mathcal{L}(E)$ for $s<t$, and $d U(t, s) / d s$ is a bounded extension of the closed operator $-U(t, s) A(s)$ (see [17, Theorem 5.3.3]). In a recent paper by Lunardi [13], the latter property, with several related results, has been shown to be true if the $A(t)$'s have a (possibly non-dense) common domain D and satisfy strong regularity assumptions.

The goal of this paper is a systematic study of the properties of $s \rightarrow U(t, s)$ under the assumptions of [3]; in this case, our results extend those of [13] and seem to be optimal. We also study the same problem under the assumptions of [5], but the situation here is more complicated and requires additional assumptions.

Received for publication December 3, 1990.
AMS Subject Classifications: 34G10, 47D05, 58D25.

