Differential and Integral Equations, Volume 5, Number 5, September 1992, pp. 1033-1040.

CONVEX CONTROL PROBLEMS FOR HEREDITARY SYSTEMS

V. IFTODE

Department of Mathematics I, Polytechnic Institute, Bucharest, Romania

(Submitted by: V. Barbu)

Abstract. This work is concerned with the dynamic programming method (variational method) for convex control problems with the hereditary state system. After obtaining the Hamilton-Jacobi equation which is satisfied by the optimal value function, the dual Hamilton-Jacobi equation is calculated. In the last part of the paper, we study the special quadratic case for which the corresponding Riccati equations are obtained.

Let us consider the Hamilton-Jacobi equation

$$\begin{pmatrix} \psi_t(t, y_1, y_2) + F(B^*\psi_{y_1}(t, y_1, y_2)) - (A_0y_1 + A_1y_2(-a), \psi_{y_1}(t, y_1, y_2)) \\ - \left(\frac{dy_2}{ds}, \psi_{y_2}(t, y_1, y_2)\right) = g(y_1) \\ \psi(0, y_1, y_2) = \psi_0(y_1), \end{cases}$$
(1)

where $(t, y_1, y_2) \in [0, T] \times \mathbb{R}^n \times W^{1,2}(-a, 0; \mathbb{R}^n)$ and the following hypotheses are satisfied:

- (i) $F: \mathbb{R}^m \to \mathbb{R}$ is a continuous convex function which is bounded on bounded subsets;
- (ii) $A_0: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator and A_1 and B are matrices;
- (iii) $\psi_0, g: \mathbb{R}^n \to \mathbb{R}$ are continuous convex functions which are bounded on bounded subsets.

We have denoted by ψ_t , ψ_{y_1} , ψ_{y_2} the partial derivatives (in a generalized sense) of the function ψ with respect to t, y_1 and y_2 , respectively. Denote by \mathcal{K} the set of all convex functions $\psi \in C(\mathbb{R}^n \times W^{1,2}(-a,0;\mathbb{R}^n))$. We associate the function $h: \mathbb{R}^m \to \mathbb{R}$, defined by

$$h(u) = \sup\{-(p, u) - F(p) : p \in \mathbb{R}^m\},\$$

i.e., $h(u) = F^*(-u)$, to the function F. Then the assumption (i) is equivalent to the condition $\lim_{|u|_U \to \infty} \frac{h(u)}{|u|_U} = \infty$.

Definition 1. The function $\psi \colon [0,T] \times \mathbb{R}^n \times L^2(-a,0;\mathbb{R}^n) \to \mathbb{R}$ defined by

$$\begin{split} \psi(t, y_1, y_2) &= \inf \left\{ \int_0^t (g(x(s)) + h(u(s))) \, ds + \psi_0(x(t)) : \\ x'(t) &= A_0 x(t) + A_1 x(t-a) + Bu(t) \text{ in } [0, T], \ x(0) &= y_1, \ x(s) = y_2(s) \\ \text{for a.e. } s, -a &\leq s \leq 0, \ u \in L^2(0, T; \mathbb{R}^m) \right\} \end{split}$$

Received July 1991.

AMS Subject Classification: 49L20, 49A15.

An International Journal for Theory & Applications